Skip to main content

Advertisement

Log in

Pulmonary hypertension due to left heart disease: diagnostic and prognostic value of CT in chronic systolic heart failure

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the ability of chest computed tomography (CT) to predict pulmonary hypertension (PH) and outcome in chronic heart failure with reduced ejection fraction (HFrEF).

Methods

We reviewed 119 consecutive patients with HFrEF by CT, transthoracic echocardiography (TTE) and right heart catheterization (RHC). CT-derived pulmonary artery (PA) diameter and PA to ascending aorta diameter ratio (PA:A ratio), left atrial, right atrial, right ventricular (RV) and left ventricular volumes were correlated with RHC mean pulmonary arterial pressure (mPAP) . Diagnostic accuracy to predict PH and ability to predict primary composite endpoint of all-cause mortality and HF events were evaluated.

Results

RV volume was significantly higher in 81 patients with PH compared to 38 patients without PH (133 ml/m2 vs. 79 ml/m2, p < 0.001) and was moderately correlated with mPAP (r=0.55, p < 0.001). Also, RV volume had higher ability to predict PH (area under the curve: 0.88) than PA diameter (0.79), PA:A ratio (0.76) by CT and tricuspid regurgitation gradient (0.83) and RV basal diameter by TTE (0.84, all p < 0.001). During the follow-up period (median: 3.4 years), 51 patients (43%) had HF events or died. After correction for important clinical, TTE and RHC parameters, RV volume (adjusted hazard ratio [HR]: 1.71, 95% CI 1.31–2.23, p < 0.001) and PA diameter (HR: 1.61, 95% CI 1.18–2.22, p = 0.003) were independent predictors of the primary endpoint.

Conclusion

In patients with HFrEF, measurement of RV volume and PA diameter on ungated CT are non-invasive markers of PH and may help to predict the patient outcome.

Key Points

• Right ventricular (RV) volume measured by chest CT has good ability to identify pulmonary hypertension (PH) in patients with chronic heart failure (HF) and reduced ejection fraction (HFrEF).

• The accuracy of pulmonary artery (PA) diameter and PA to ascending aorta diameter ratio (PA:A ratio) to predict PH was similar to previous studies, however, with lower cut-offs (28.1 mm and 0.92, respectively).

• Chest CT-derived PA diameter and RV volume independently predict all-cause mortality and HF events and improve outcome prediction in patients with advanced HFrEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BSA:

Body surface area

CI :

Confidence interval

FAC:

Fractional area change

HFrEF:

Heart failure with reduced injection fraction

IHD:

Ischemic heart disease

IQR:

Interquartile range

LA:

Left atrium

LV:

Left ventricular or ventricle

LVEF:

Left ventricular ejection fraction

NIDCM:

Nonischemic dilated cardiomyopathy

mPAP:

Mean pulmonary artery pressure

PA:

Pulmonary artery

PAP:

Pulmonary artery pressure

PAWP:

Pulmonary artery wedge pressure

PH:

Pulmonary hypertension

PH-LHD:

Pulmonary hypertension due to left heart disease

PVR:

Pulmonary vascular resistance

RA :

Right atrium

ROC:

Receiving operating curve

RHC:

Right heart catheterization

RV:

Right ventricular or right ventricle

TR:

Tricuspid regurgitation

TTE:

Transthoracic echocardiography

References

  1. Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  Google Scholar 

  2. Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37:67–119

    Article  Google Scholar 

  3. Vachiéry JL, Adir Y, Barberà JA et al (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62:D100–D108

    Article  Google Scholar 

  4. Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188

    Article  CAS  Google Scholar 

  5. Grigioni F, Potena L, Galie N et al (2016) Prognostic implications of serial assessments of pulmonary hypertension in severe chronic heart failure. J Heart Lung Transplant 25:1241–1246

    Article  Google Scholar 

  6. Costard-Jäckle A, Fowler MB (1992) Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol 19:48–54

    Article  Google Scholar 

  7. Butler J, Stankewicz MA, Wu J et al (2005) Pre-transplant reversible pulmonary hypertension predicts higher risk for mortality after cardiac transplantation. J Heart Lung Transplant 24:170–177

    Article  Google Scholar 

  8. Mehra MR, Kobashigawa J, Starling R et al (2006) Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates--2006. J Heart Lung Transplant 25:1024–1042

    Article  Google Scholar 

  9. Gavazzi A, Berzuini C, Campana C et al (1997) Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant 16:774–785

    CAS  PubMed  Google Scholar 

  10. Ghio S, Temporelli PL, Klersy C et al (2013) Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail 15:408–414

    Article  Google Scholar 

  11. Kjaergaard J, Akkan D, Iversen KK, Kober L, Torp-Pedersen C, Hassager C (2007) Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail 9:610–616

    Article  Google Scholar 

  12. Bourantas CV, Loh HP, Bragadeesh T et al (2011) Relationship between right ventricular volumes measured by cardiac magnetic resonance imaging and prognosis in patients with chronic heart failure. Eur J Heart Fail 13:52–60

    Article  Google Scholar 

  13. Mehra MR, Canter CE, Hannan MM et al (2016) The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant 35:1–23

    Article  Google Scholar 

  14. Freed BH, Collins JD, François CJ et al (2016) MR and CT Imaging for the Evaluation of Pulmonary Hypertension. JACC Cardiovasc Imaging 9:715–732

    Article  Google Scholar 

  15. Kuriyama K, Gamsu G, Stern RG, Cann CE, Herfkens RJ, Brundage BH (1984) CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 19:16–22

    Article  CAS  Google Scholar 

  16. Karazincir S, Balci A, Seyfeli E et al (2008) CT assessment of main pulmonary artery diameter. Diagn Interv Radiol 14:72–74

    PubMed  Google Scholar 

  17. Ng CS, Wells AU, Padley SP (1999) A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J Thorac Imaging 14:270–278

    Article  CAS  Google Scholar 

  18. Mahammedi A, Oshmyansky A, Hassoun PM, Thiemann DR, Siegelman SS (2013) Pulmonary artery measurements in pulmonary hypertension: the role of computed tomography. J Thorac Imaging 28:96–103

    Article  Google Scholar 

  19. Devaraj A, Wells AU, Meister MG et al (2008) The Effect of Diffuse Pulmonary Fibrosis on the Reliability of CT Signs of Pulmonary Hypertension. Radiology 249:1042–1049

    Article  Google Scholar 

  20. Alhamad EH, Al-Boukai AA, Al-Kassimi FA et al (2011) Prediction of pulmonary hypertension in patients with or without interstitial lung disease: reliability of CT findings. Radiology 260:875–883

    Article  Google Scholar 

  21. Devaraj A, Loveridge R, Bosanac D et al (2014) Portopulmonary hypertension: improved detection using CT and echocardiography in combination. Eur Radiol 24:2385–2393

    Article  Google Scholar 

  22. Iyer AS, Wells JM, Vishin S, Bhatt SP, Wille KM, Dransfield MT (2014) CT scan-measured pulmonary artery to aorta ratio and echocardiography for detecting pulmonary hypertension in severe COPD. Chest 145:824–832

    Article  Google Scholar 

  23. Shen Y, Wan C, Tian P et al (2014) CT-base pulmonary artery measurement in the detection of pulmonary hypertension: a meta-analysis and systematic review. Medicine (Baltimore) 93:e256

    Article  Google Scholar 

  24. Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM (2010) Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology 254:609–616

    Article  Google Scholar 

  25. Chan AL, Juarez MM, Shelton DK et al (2011) Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging 11:7

    Article  Google Scholar 

  26. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  Google Scholar 

  27. Puntmann VO, Carr-White G, Jabbour A et al (2016) T1-Mapping and Outcome in Nonischemic Cardiomyopathy: All-Cause Mortality and Heart Failure. JACC Cardiovasc Imaging 9:40–50

    Article  Google Scholar 

  28. Hicks KA, Tcheng JE, Bozkurt B et al (2015) ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J Am Coll Cardiol 66:403–469

    Article  Google Scholar 

  29. Meyer P, Filippatos GS, Ahmed MI et al (2010) Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121:252–258

    Article  Google Scholar 

  30. Rahimi K, Bennett D, Conrad N et al (2014) Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail 2:440–446

    Article  Google Scholar 

  31. Pocock SJ, Ariti CA, McMurray JJ et al (2013) Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 34:1404–1413

    Article  Google Scholar 

  32. Dzudie A, Kengne AP, Thienemann F, Sliwa K (2014) Predictors of hospitalizations for heart failure and mortality in patients with pulmonary hypertension associated with left heart disease: a systematic review. BMJ Open 4:e004843

    Article  Google Scholar 

  33. Karakus G, Kammerlander AA, Aschauer S et al (2015) Pulmonary artery to aorta ratio for the detection of pulmonary hypertension: cardiovascular magnetic resonance and invasive hemodynamics in heart failure with preserved ejection fraction. J Cardiovasc Magn Reson 17:79

    Article  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey C. Colin.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Anne-Catherine Pouleur, MD, PhD

Conflict of interest

Pr Pouleur is Clinical Master Specialist of the Fondation Nationale de la Recherche Scientifique of the Belgian Government, FRSM.

The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Christophe de Meester kindly provided statistical advice for this manuscript and has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, G.C., Gerber, B.L., de Meester de Ravenstein, C. et al. Pulmonary hypertension due to left heart disease: diagnostic and prognostic value of CT in chronic systolic heart failure. Eur Radiol 28, 4643–4653 (2018). https://doi.org/10.1007/s00330-018-5455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5455-6

Keywords

Navigation