Skip to main content

Advertisement

Log in

Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare image quality, apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM)-derived parameters between turbo spin-echo (TSE)-diffusion-weighted imaging (DWI) and echo-planar imaging (EPI)-DWI of the head and neck.

Methods

Fourteen volunteers underwent head and neck imaging using TSE-DWI and EPI-DWI. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC and IVIM-derived parameters were compared between the two techniques. Bland-Altman analysis was performed to analyse reproducibility between the quantitative parameters of TSE-DWI and EPI-DWI.

Results

DR of TSE-DWI was significantly smaller than that of EPI-DWI. SNR and CNR of TSE-DWI were significantly higher than those of EPI-DWI. ADC and IVIM-derived parameters of TSE-DWI showed higher values than those of EPI-DWI, although the difference was not significant. Bland-Altman analysis showed wide limits of agreement between the two sequences.

Conclusion

TSE-DWI can produce better image quality than EPI-DWI, while TSE-DWI possibly exhibits different values of quantitative parameters. Therefore, TSE-DWI could be a good alternative to EPI-DWI for patients sensitive to distortion. However, it is not recommended to use both TSE-DWI and EPI-DWI on follow-up.

Key points

Head and neck DWI is especially sensitive to magnetic inhomogeneity.

The distortion of images was less with TSE-DWI than with EPI-DWI.

TSE-DWI can possibly exhibit higher ADC and IVIM-derived parameters than EPI-DWI.

Bland-Altman analysis showed unacceptable LoA in quantitative analysis between TSE-DWI and EPI-DWI.

It is not recommended to use both TSE-DWI and EPI-DWI for follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

D:

Pure diffusion coefficient

DR:

Distortion ratio

DWI:

Diffusion-weighted imaging

EPI:

Echo-planar imaging

f:

Perfusion fraction

IVIM:

Intravoxel incoherent motion

SENSE:

Sensitivity encoding

TSE:

Turbo spin-echo

References

  1. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    Article  CAS  PubMed  Google Scholar 

  2. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion weighted echo planar pulse sequences. AJR 162:671–677

    Article  CAS  PubMed  Google Scholar 

  3. Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S (2000) Diffusion-weighted echo-planar MR imaging in differentiation diagnosis of brain tumors and tumor-like conditions. Eur Radiol 10:1342–1350

    Article  CAS  PubMed  Google Scholar 

  4. Tsuchiya K, Katase S, Yoshino A, Hachiya J (1999) Diffusion-weighted MR imaging of encephalitis. AJR 173:1097–1099

    Article  CAS  PubMed  Google Scholar 

  5. Kim S, Loevner L, Quon H et al (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 15:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Takashima S, Takayama F et al (2001) Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 220:621–630

    Article  CAS  PubMed  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Lavel-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  8. Sumi M, Van Cauteren M, Sumi T, Obara M, Ichikawa Y, Nakamura T (2012) Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 263:770–777

    Article  PubMed  Google Scholar 

  9. Hauser T, Essig M, Jensen A et al (2013) Characterization and therapy monitoring of head and neck carcinomas using diffusion-imaging-based intravoxel incoherent motion parameters – preliminary results. Neuroradiology 55:527–536

    Article  PubMed  Google Scholar 

  10. Verhappen MH, Pouwels PJ, Ljumanovic R et al (2012) Diffusion-weighted MR imaging in head and neck cancer: comparison between half-fourier acquisition single-shot turbo spin-echo and EPI techniques. AJNR 33:1239–1246

    Article  CAS  PubMed  Google Scholar 

  11. Sigmund EE, Jensen J (2011) Basic physical principles of body diffusion-weighted MRI. In: Taouli B (ed) Extra-cranial Applications of Diffusion-weighted MRI. Cambridge University Press, Cambridge, pp 1–17

    Google Scholar 

  12. Yoshino N, Yamada I, Ohbayashi N et al (2001) Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging initial report. Radiology 221:837–842

    Article  CAS  PubMed  Google Scholar 

  13. Thoeny HC, De Keyzer F, King AD et al (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263:19–32

    Article  PubMed  Google Scholar 

  14. De Foer B, Vercruysse JP, Pilet B et al (2006) Single-shot, turbo spin-echo, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR 27:1480–1482

    PubMed  Google Scholar 

  15. Yoshida T, Urikura A, Shirata K, Nakaya Y, Terashima S, Hosokawa Y et al (2016) Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study. Br J Radiol 89:20160512

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elefante A, Cavaliere M, Russo C et al (2015) Diffusion weighted MR imaging of primary and recurrent middle ear cholesteatoma: an assessment by readers with different expertise. Biomed Res Int: 1–7

  17. Kolff-Gart AS, Pouwels PJW, Noij DP et al (2015) Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI system repeat session. AJNR Am J Neuroradiol 36:384–390

    Article  CAS  PubMed  Google Scholar 

  18. Kamimura K, Nakajo M, Fukukura Y, et al (2016) Intravoxel incoherent motion in normal pituitary gland: initial study with turbo spin-echo diffusion-weighted imaging. AJNR Am J Neuroradiol 1–6

  19. Fujima N, Yoshida D, Sakashita T et al (2014) Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging 32:1206–1213

    Article  PubMed  Google Scholar 

  20. Koyasu S, Lima M, Umeoka S et al (2014) The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience. Eur Radiol 24:3088–3096

    Article  PubMed  Google Scholar 

  21. Moon WJ (2007) Measurement of signal-to-noise ratio in MR imaging with sensitivity encoding. Radiology 243:908–909

    Article  PubMed  Google Scholar 

  22. Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245:638–639

    Article  PubMed  Google Scholar 

  23. Marzi S, Piludu F, Vidiri A (2013) Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR Biomed 26:1806–1814

    Article  PubMed  Google Scholar 

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancent 327:307–310

    Article  Google Scholar 

  25. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  26. Edelstein WA, Glover GH, Hardy CJ, Rendington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  CAS  PubMed  Google Scholar 

  27. Sakamoto J, Sasaki Y, Otonari-Yamamoto M, Nishikawa K, Sano T (2012) Diffusion-weighted imaging of the head and neck with HASTE: influence of imaging parameters on image quality. Oral Radiol 28:87–94

    Article  Google Scholar 

  28. Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448–453

    Article  CAS  PubMed  Google Scholar 

  29. Andreou A, Koh DM, Collins DJ et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434

    Article  CAS  PubMed  Google Scholar 

  30. Suo S, Lin N, Wang H et al (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: Comparison of diffusion curve-fitting methods. J Magn Reson Imaging 42:362–370

    Article  PubMed  Google Scholar 

  31. Le Bihan D (2008) Intravoxel incoherent motion perfusion MR inaging: a wake-up call. Radiology 249:748–752

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetake Yabuuchi.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Hidetake Yabuuchi.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work was not supported by any grants.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all participants.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikayama, R., Yabuuchi, H., Sonoda, S. et al. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck. Eur Radiol 28, 316–324 (2018). https://doi.org/10.1007/s00330-017-4990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4990-x

Keywords

Navigation