Skip to main content

Advertisement

Log in

Diffusion-weighted imaging of the head and neck with HASTE: influence of imaging parameters on image quality

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

Half-Fourier single-shot turbo spin-echo (HASTE) can be applied to diffusion-weighted (DW) imaging of the head and neck. However, HASTE DW imaging has certain drawbacks, such as severe blurring and low signal-to-noise ratio (SNR). The purpose of this study was to evaluate the influence of imaging parameters on image quality using phantoms. We also evaluated the discrimination ability of the apparent diffusion coefficient (ADC) in HASTE DW imaging to assess whether the technique is applicable to head and neck lesions.

Methods

The modulation transfer function (MTF), SNR, and ADC were compared using dedicated phantoms to evaluate the influence of matrix size (192 × 192 and 256 × 256) and receiver bandwidth (RBW 200, 400, 600, and 789 Hz/pixel) on HASTE DW images.

Results

A wide RBW setting tended to improve the MTF, regardless of the matrix size and phase-encoding direction. In contrast, a wide RBW setting tended to impair the SNR, regardless of the matrix size. At the same RBW setting, the MTF and SNR for a matrix size of 192 × 192 were higher than those for a matrix size of 256 × 256. A wide RBW setting tended to improve the discrimination ability of ADCs among the substances, regardless of the matrix size.

Conclusions

A wide RBW and small matrix size improved the MTF and SNR of HASTE DW images. A wide RBW also improved the discrimination ability of the ADC. Therefore, HASTE DWI should be performed with a wide RBW setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    PubMed  Google Scholar 

  2. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology. 1990;177:407–14.

    PubMed  Google Scholar 

  3. Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology. 1994;190:475–8.

    PubMed  Google Scholar 

  4. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217:331–45.

    PubMed  Google Scholar 

  5. Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996;199:391–401.

    PubMed  Google Scholar 

  6. Tsuruda JS, Chew WM, Moseley M, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJR Am J Roentgenol. 1990;155:1059–65.

    PubMed  Google Scholar 

  7. Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S. Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions. Eur Radiol. 2000;10:1342–50.

    Article  PubMed  Google Scholar 

  8. Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220:621–30.

    Article  PubMed  Google Scholar 

  9. Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol. 2003;24:1627–34.

    PubMed  Google Scholar 

  10. Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, Okafuji T, Soeda H, et al. Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization? Radiology. 2008;249:909–16.

    Article  PubMed  Google Scholar 

  11. Maeda M, Kato H, Sakuma H, Maier SE, Takeda K. Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck. AJNR Am J Neuroradiol. 2005;26:1186–92.

    PubMed  Google Scholar 

  12. Sasaki M, Nakamura T. Pixel-based time-intensity curve analysis and apparent diffusion coefficient mapping of sinonasal organized hematomas. Oral Radiol. 2010;26:101–5.

    Article  Google Scholar 

  13. Yoshino N, Yamada I, Ohbayashi N, Honda E, Ida M, Kurabayashi T, et al. Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging—initial results. Radiology. 2001;221:837–42.

    Article  PubMed  Google Scholar 

  14. Sakamoto J, Yoshino N, Okochi K, Imaizumi A, Tetsumura A, Kurohara K, et al. Tissue characterization of head and neck lesions using diffusion-weighted MR imaging with SPLICE. Eur J Radiol. 2009;69:260–8.

    Article  PubMed  Google Scholar 

  15. Juan CJ, Chang HC, Hsueh CJ, Liu HS, Huang YC, Chung HW, et al. Salivary glands: echo-planar versus PROPELLER diffusion-weighted MR imaging for assessment of ADCs. Radiology. 2009;253:144–52.

    Article  PubMed  Google Scholar 

  16. Tang Y, Yamashita Y, Namimoto T, Takahashi M. Characterization of focal liver lesions with half-Fourier acquisition single-shot turbo-spin-echo (HASTE) and inversion recovery (IR)-HASTE sequences. J Magn Reson Imaging. 1998;8:438–45.

    Article  PubMed  Google Scholar 

  17. Tang Y, Yamashita Y, Abe Y, Namimoto T, Takahashi M. Experimental study on HASTE sequences: impacts of parameters on liver imaging. Comput Med Imaging Graph. 1999;23:227–34.

    Article  PubMed  Google Scholar 

  18. Baltzer PA, Renz DM, Herrmann KH, Dietzel M, Krumbein I, Gajda M, et al. Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol. 2009;19:1612–20.

    Article  PubMed  Google Scholar 

  19. Bammer R, Augustin M, Prokesch RW, Stollberger R, Fazekas F. Diffusion-weighted imaging of the spinal cord: interleaved echo-planar imaging is superior to fast spin-echo. J Magn Reson Imaging. 2002;15:364–73.

    Article  PubMed  Google Scholar 

  20. Lovblad KO, Jakob PM, Chen Q, Baird AE, Schlaug G, Warach S, et al. Turbo spin-echo diffusion-weighted MR of ischemic stroke. AJNR Am J Neuroradiol. 1998;19:201–8.

    PubMed  Google Scholar 

  21. Kito S, Morimoto Y, Tanaka T, Tominaga K, Habu M, Kurokawa H, et al. Utility of diffusion-weighted images using fast asymmetric spin-echo sequences for detection of abscess formation in the head and neck region. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:231–8.

    Article  PubMed  Google Scholar 

  22. Li T, Mirowitz SA. Fast T2-weighted MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts. Magn Reson Imaging. 2003;21:745–53.

    Article  PubMed  Google Scholar 

  23. Chung HW, Chen CY, Zimmerman RA, Lee KW, Lee CC, Chin SC. T2-Weighted fast MR imaging with true FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain maturation. AJR Am J Roentgenol. 2000;175:1375–80.

    PubMed  Google Scholar 

  24. Lipton ML. Readout modules: fast imaging. In: Lipton ML, editor. Totally accessible MRI: a user’s guide to principles, technology, and applications. New York: Springer; 2008. p. 174–86.

    Google Scholar 

  25. Elster AD, Burdette JH. Fast scanning techniques. In: Elster AD, Burdette JH, editors. Questions and answers in magnetic resonance imaging. Philadelphia: Mosby; 2001. p. 248–72.

    Google Scholar 

  26. Mitjà C, Revuelta R. Slanted edge MTF. 2008. http://rsb.info.nih.gov/ij/plugins/se-mtf/index.html. Accessed 27 March 2012.

  27. Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med Phys. 1985;12:232–3.

    Article  PubMed  Google Scholar 

  28. Bonnett AH, Soukup GC. NEMA standards publication MS 1-2008: determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. Rosslyn: National Electrical Manufacturers Association; 1999.

  29. Papanikolaou N, Gourtsoyianni S, Yarmenitis S, Maris T, Gourtsoyiannis N. Comparison between two-point and four-point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen. Eur J Radiol. 2010;73:305–9.

    Article  PubMed  Google Scholar 

  30. R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. 2009. ISBN 3-900051-07-0. http://www.R-project.org.

  31. Chemical Society of Japan. Kagaku Binran (handbook of chemistry). Tokyo: Maruzen; 2004.

    Google Scholar 

Download references

Acknowledgments

This research was supported by an Oral Health Science Center Grant (hrc8) from Tokyo Dental College, and by a project for private universities: matching fund subsidy from MEXT of Japan, 2010–2012. We would like to thank Associate Professor Jeremy Williams, Tokyo Dental College, for his assistance with the English of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, J., Sasaki, Y., Otonari-Yamamoto, M. et al. Diffusion-weighted imaging of the head and neck with HASTE: influence of imaging parameters on image quality. Oral Radiol 28, 87–94 (2012). https://doi.org/10.1007/s11282-012-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-012-0091-3

Keywords

Navigation