Skip to main content
Log in

Transferability and the effect of colour calibration during multi-image classification of Arctic vegetation change

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Mapping changes in vegetation cover is essential for understanding the consequences of climate change on Arctic ecosystems. Classification of ultra-high spatial-resolution (UHR, < 1 cm) imagery can provide estimates of vegetation cover across space and time. The challenge of this approach is to assure comparability of classification across many images taken at different illumination conditions and locations. With warming, vegetation at higher elevation is expected to resemble current vegetation at lower elevation. To investigate the value of classification of UHR imagery for monitoring vegetation change, we collected visible and near-infrared images from 108 plots with hand-held cameras along an altitudinal gradient in Greenland and examined the classification accuracy of shrub cover on independent images (i.e. classification transferability). We implemented several models to examine if colour calibration improves transferability based on an in-image calibration target. The classifier was trained on different number of images to find the minimum training subset size. With a training set of ~ 20% of the images the overall accuracy levelled off at about 81% and 68% on the non-calibrated training and validation images, respectively. Colour calibration improved the accuracy on training images (1–4%) while it only improved the classifier transferability significantly for training sets < 20%. Linear calibration only based on the target’s grey series improved transferability most. Reasonable transferability of Arctic shrub cover classification can be obtained based only on spectral data and about 20% of all images. This is promising for vegetation monitoring through multi-image classification of UHR imagery acquired with hand-held cameras or Unmanned Aerial Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berns RS, Taplin LA, Nezamabadi M, Mohammadi M, Zhao Y (2005) Spectral imaging using a commercial colour-filter array digital camera. ICOM Committee for Conservation. Triennial meeting, 14th, The Hague, Netherlands, pp. 743–750

  • Bold KC, Wood F, Edwards PJ, Williard KWJ, Schoonover JE (2010) Using photographic image analysis to assess ground cover: a case study of forest road cutbanks. Environ Monit Assess 163:685–698

    Article  PubMed  Google Scholar 

  • Booth DT, Cox SE (2008) Image-based monitoring to measure ecological change in rangeland. Front Ecol Environ 6:185–190

    Article  Google Scholar 

  • Bricher PK (2012) Methods for mapping the tundra vegetation of sub-Antarctic Macquarie Island. Dissertation, School of Geography and Environmental Studies University of Tasmania

  • Chen ZH, Chen WJ, Leblanc SG, Henry GHR (2010) Digital photograph analysis for measuring percent plant cover in the Arctic. Arctic 63:315–326

    Article  Google Scholar 

  • Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. 2014 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2014.461

  • Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jonsdottir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Levesque E, Magnusson B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Schmidt NMRC, Shaver GR, Spasojevic MJ, Porhallsdottir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM, Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araujo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnbock T, Gegout JC, Gomez-Garcia D, Grytnes JA, Heegaard E, Hoistad F, Nogues-Bravo D, Normand S, Puscas M, Sebastia MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341

    Article  Google Scholar 

  • Finlayson GD, Trezzi E (2004) Shades of gray and colour constancy. The Twelfth color imaging conference: color science and engineering systems, technologies, applications, CIC 2004, November 9, 2004, Scottsdale, Arizona, pp. 37–41

  • Fischer T, Veste M, Eisele A, Bens O, Spyra W, Huttl RF (2012) Small scale spatial heterogeneity of Normalized Difference Vegetation Indices (NDVIs) and hot spots of photosynthesis in biological soil crusts. Flora 207:159–167

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing Environ 80:185–201

    Article  Google Scholar 

  • Gehler, P. & S. Nowozin (2009) On feature combination for multiclass object classification. 2009 IEEE 12th international conference on computer vision. https://doi.org/10.1109/ICCV.2009.5459169

  • Gehler PV, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited. 2008 IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2008.4587765

  • Guay KC, Beck PSA, Goetz SJ (2015) Long-term arctic growing season NDVI trends from GIMMS 3g, 1982–2012. ORNL DAAC, Oak Ridge, Tennessee. http://dx.doi.org/10.3334/ORNLDAAC/1275

  • Hansen RR, Hansen OL, Bowden JJ, Treier UA, Normand S, Høye T (2016) Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. PeerJ 4:e2224

    Article  PubMed  PubMed Central  Google Scholar 

  • He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu MN, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv 1:4–18

    Article  Google Scholar 

  • Hyman JM (2010) Imagers as sensors: using visible light images to measure natural phenomena dissertation. University of California, Los Angeles

    Google Scholar 

  • Jackowski M, Goshtasby A, Bines S, Roseman D, Yu C (1997) Correcting the geometry and color of digital images. IEEE Trans Pattern Anal Mach Intell 19:1152–1158

    Article  Google Scholar 

  • Johansen K, Sohlbach M, Sullivan B, Stringer S, Peasley D, Phinn S (2014) Mapping banana plants from high spatial resolution orthophotos to facilitate plant health assessment. Remote Sens 6:8261–8286

    Article  Google Scholar 

  • Karami M, Westergaard-Nielsen A, Normand S, Treier UA, Elberling B, Hansen BU (2018) A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS J Photogramm Remote Sens 146:518–529

    Article  Google Scholar 

  • Kercher SM, Frieswyk CB, Zedler JB (2003) Effects of sampling teams and estimation methods on the assessment of plant cover. J Veg Sci 14:899–906

    Article  Google Scholar 

  • Kreslin R, Calvo PM, Corzo LG, Peer P (2014) Linear chromatic adaptation transform based on delaunay triangulation. Math Probl Eng. https://doi.org/10.1155/2014/760123

    Article  Google Scholar 

  • Lengyel S, Deri E, Varga Z, Horvath R, Tothmeresz B, Henry PY, Kobler A, Kutnar L, Babij V, Seliskar A, Christia C, Papastergiadou E, Gruber B, Henle K (2008) Habitat monitoring in Europe: a description of current practices. Biodivers Conserv 17:3327–3339

    Article  Google Scholar 

  • Liu NF, Treitz P (2016) Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data. Int J Appl Earth Obs 52:445–456

    Article  Google Scholar 

  • Luscier JD, Thompson WL, Wilson JM, Gorham BE, Dragut LD (2006) Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Front Ecol Environ 4:408–413

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from Paleoclimate Archives. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 383–464

    Google Scholar 

  • McCamy CS, Marcus H, Davidson JG (1976) A Color-Rendition Chart. J Appl Photogr Eng 2:95–99

    Google Scholar 

  • Menesatti P, Angelini C, Pallottino F, Antonucci F, Aguzzi J, Costa C (2012) RGB color calibration for quantitative image analysis: the “3D thin-plate spline” warping approach. Sensors 12:7063–7079

    Article  PubMed  Google Scholar 

  • Morueta-Holme N, Engemann K, Sandoval-Acuna P, Jonas JD, Segnitz RM, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci USA 112:12741–12745

    Article  CAS  PubMed  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:15

    Article  Google Scholar 

  • Myers-Smith IH, Hallinger M, Blok D, Sass-Klaassen U, Rayback SA, Weijers S, Trant AJ, Tape KD, Naito AT, Wipf S, Rixen C, Dawes MA, Wheeler JA, Buchwal A, Baittinger C, Macias-Fauria M, Forbes BC, Lévesque E, Boulanger-Lapointe N, Beil I, Ravolainen V, Wilmking M (2015a) Methods for measuring arctic and alpine shrub growth: a review. Ear Sci Rev 140:1–13

    Article  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jorgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M (2015b) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–891

    Article  Google Scholar 

  • Nabe-Nielsen J, Normand S, Hui FKC, Stewart L, Bay C, Nabe-Nielsen LI, Schmidt NM (2017) Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol Evol 7:10233–10242

    Article  PubMed  PubMed Central  Google Scholar 

  • Neeser C, Martin AR, Mortensen JP (2000) A comparison of visual and photographic estimates of weed biomass and weed control. Weed Technol 14:586–590

    Article  Google Scholar 

  • Neumann C, Weiss G, Schmidtlein S, Itzerott S, Lausch A, Doktor D, Brell M (2015) Gradient-based assessment of habitat quality for spectral ecosystem monitoring. Remote Sens 7:2871–2898

    Article  Google Scholar 

  • Nielsen SS, von Arx G, Damgaard CF, Abermann J, Buchwal A, Büntgen U, Treier UA, Barfod AS, Normand S (2017) Xylem anatomical trait variability provides insight on the climate-growth relationship of Betula nana in western Greenland. Arct Antarct Alp Res 49:359–371

    Article  Google Scholar 

  • Normand S, Randin C, Ohlemüller R, Bay C, Høye TT, Kjær ED, Körner C, Lischke H, Maiorano L, Paulsen J, Pearman PB, Psomas A, Treier UA, Zimmermann NE, Svenning JC (2013) A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Phil Trans R Soc B 368:20120479

    Article  PubMed  Google Scholar 

  • Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3:673–677

    Article  Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJ, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Quevedo RA, Aguilera JM, Pedreschi F (2010) Color of Salmon Fillets By Computer Vision and Sensory Panel. Food Bioprocess Tech 3:637–643

    Article  Google Scholar 

  • Ritchie GL, Sullivan DG, Perry CD, Hook JE, Bednarz CW (2008) Preparation of a low-cost digital camera system for remote sensing. Appl Eng Agric 24:885–894

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104

    Article  Google Scholar 

  • Rose RA, Byler D, Eastman JR, Fleishman E, Geller G, Goetz S, Guild L, Hamilton H, Hansen M, Headley R, Hewson J, Horning N, Kaplin BA, Laporte N, Leidner A, Leinagruber P, Morisette J, Musinsky J, Pintea L, Prados A, Radeloff VC, Rowen M, Saatchi S, Schil S, Tabor K, Turner W, Vodacek A, Vogelnaann J, Wegmann M, Wilkie D (2015) Ten ways remote sensing can contribute to conservation. Conserv Biol 29:350–359

    Article  PubMed  Google Scholar 

  • Signorell A (2017) DescTools: Tools for descriptive statistics. R package version 0.99.21 (2017-06-29). Retrieved from https://cran.r-project.org/package=DescTools

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702

    Article  Google Scholar 

  • Tichy L (2016) Field test of canopy cover estimation by hemispherical photographs taken with a smartphone. J Veg Sci 27:427–435

    Article  Google Scholar 

  • Villafuerte R, Negro JJ (1998) Digital imaging for colour measurement in ecological research. Ecol Lett 1:151–154

    Article  Google Scholar 

  • Wang XZ, Zhang D (2010) An optimized tongue image color correction scheme. IEEE Trans Inf Technol Biomed 14:1355–1364

    Article  PubMed  Google Scholar 

  • Wang XZ, Zhang B, Guo ZH, Zhang D (2013) Facial image medical analysis system using quantitative chromatic feature. Expert Syst Appl 40:3738–3746

    Article  Google Scholar 

  • Whiteside TG, Boggs GS, Maier SW (2011) Comparing object-based and pixel-based classifications for mapping savannas. Int J Appl Earth Obs Geoinf 13:884–893

    Article  Google Scholar 

  • Zlinszky A, Heilmeier H, Balzter H, Czucz B, Pfeifer N (2015) Remote sensing and GIS for habitat quality monitoring: new approaches and future research. Remote Sens 7:7987–7994

    Article  Google Scholar 

Download references

Acknowledgements

The research was initiated with a WSL internal innovative research grant and supported by a Villum Young Investigator Grant (VKR023456), an Aarhus University (AU), Research Foundation grant (AUFF-E-2015-FLS-8-73) and an AU Science and Technology Synergy grant. Fieldwork was possible due to funding from the AU Arctic Research Centre. We are grateful to Rok Kreslin and Peter Peer for providing their code in MATLAB for the DT method; to Constantinos Tsirogiannis for his valuable help in code optimization and to Ditte Grube Barild for geo-referencing the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Normand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 108 kb)

Supplementary material 2 (PDF 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyaie, S., Treier, U.A., Watmough, G.R. et al. Transferability and the effect of colour calibration during multi-image classification of Arctic vegetation change. Polar Biol 42, 1227–1239 (2019). https://doi.org/10.1007/s00300-019-02491-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02491-7

Keywords

Navigation