Skip to main content

Advertisement

Log in

Inter-annual variation of the summer zooplankton community in the Chukchi Sea: spatial heterogeneity during a decade of rapid ice decline

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ice decline is believed to benefit the pelagic food chain in Arctic shelf ecosystems, but the impacts of ice decline are usually difficult to detect owing to the overlap of ice decline with natural variability. To evaluate the responses of zooplankton communities to sea ice reduction in the Chukchi Sea, we combined zooplankton samples collected in the early summers of 2003, 2008, 2010, and 2012 and compared the inter-annual changes in the subregions with various physical and biological characteristics. Three geographically separate communities were identified by a hierarchical cluster analysis. The Bering Sea water influenced the central (CCS) and south (SCS) Chukchi Sea communities, which had total abundances that were approximately ten times higher than that of the north (NCS) Chukchi Sea community, and the inter-annual variability was dramatic. The SCS and CCS shared dominant taxa of Calanus glacialis, Pseudocalanus spp., barnacle larvae (nauplii and cypris), and Oikopleura vanhoffeni, while Pacific and neritic species were recognized as the dominant species in only the SCS. The inter-annual variations in the dominant species assemblages can be explained by the variability in oceanic circulation and the counteractions between copepods and barnacle larvae. Despite the numerical fluctuations, an increase in the average abundances in the Pacific-influenced region and the summer establishment of the C. glacialis population are proposed to be the most pronounced responses to ice decline. The NCS, which is governed by cold Arctic water, was characterized by low abundances and a constant dominant taxa assemblage. This area was also characterized by the presence of the high Arctic species Calanus hyperboreus and a lack of barnacle larvae. The total abundance of the NCS doubled from 2003 to 2008, while the community structure remained consistent. These results indicate that sea ice reduction has a positive effect on the zooplankton community, but heterogeneity is the main obstacle to the detection of the zooplankton community in the Western Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrigo KR, Perovich DK, Pickart RS et al (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336(6087):1408

    Article  PubMed  CAS  Google Scholar 

  • Ashjian CJ, Campbell RG, Welch HE, Butler M, Van Keuren D (2003) Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean. Deep Sea Res Part I 50(10):1235–1261

    Article  Google Scholar 

  • Baier CT, Napp JM (2003) Climate-induced variability in Calanus marshallae populations. J Plankton Res 25(7):771–782

    Article  Google Scholar 

  • Barnes H, Bagenal TB (1951) Observations on Nephrops norvegicus (L.) and on an epizoic population of Balanus crenatus Brug. J Mar Biol Assoc UK 30(2):369–380

    Article  Google Scholar 

  • Brodsky KA (1967) Calanoida of the far-eastern seas and polar basin of the USSR. Israel Program Scientific Translation, Jerusalem

    Google Scholar 

  • Brodsky KA, Vyshkvartzeva NV, Kos MS, Markhaseva EL (1983) Copepoda Calanoida of the seas of the USSR and adjastent seas. Opredeliteli po faune SSSR 35:1–358

    Google Scholar 

  • Clare AS, Walker G (1986) Further studies on the control of the hatching process in Balanus balanoides (L.). J Exp Mar Biol Ecol 97(3):295–304

    Article  CAS  Google Scholar 

  • Clare AS, Walker G, Holland DL, Crisp DJ (1984) Nature of the barnacle hatching substance and the role of dopamine in the egg hatching process. In: Engles W (ed) Advances in invertebrate reproduction, vol 3. Elsevier Science Publishers B.V, Amsterdam, p 569

    Google Scholar 

  • Clough LM, Ambrose WG, Cochran JK (1997) Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean. Deep Sea Res Part II 44(8):1683–1704

    Article  CAS  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett. https://doi.org/10.1029/2007GL031972

    Article  Google Scholar 

  • Conover RJ, Siferd TD (1993) Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 46(4):303–311

    Article  Google Scholar 

  • Daase M, Falk-Petersen S, Varpe Ø et al (2013) Timing of reproductive events in the marine copepod Calanus glacialis: a pan-Arctic perspective. Can J Fish Aquat Sci 70(6):871–884

    Article  Google Scholar 

  • Day RH, Weingartner TJ, Hopcroft RR et al (2013) The offshore northeastern Chukchi Sea, Alaska: a complex high-latitude ecosystem. Cont Shelf Res 67:147–165

    Article  Google Scholar 

  • Durbin EG, Casas MC (2013) Early reproduction by Calanus glacialis in the Northern Bering Sea: the role of ice algae as revealed by molecular analysis. J Plankton Res 36(2):523–541

    Article  CAS  Google Scholar 

  • Eisner L, Hillgruber N, Martinson E, Maselko J (2013) Pelagic fish and zooplankton species assemblages in relation to water mass characteristics in the northern Bering and southeast Chukchi seas. Polar Biol 36(1):87–113

    Article  Google Scholar 

  • Ershova EA, Hopcroft RR, Kosobokova KN (2015) Inter-annual variability of summer mesozooplankton communities of the western Chukchi Sea: 2004–2012. Polar Biol 38(9):1461–1481

    Article  Google Scholar 

  • Fetzer I, Arntz WE (2008) Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water. Mar Ecol Prog Ser 356:189–202

    Article  Google Scholar 

  • Frost BW (1974) Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar Biol 26(1):77–99

    Article  Google Scholar 

  • Gaonkar CA, Anil AC (2010) What do barnacle larvae feed on? Implications in biofouling ecology. J Mar Biol Assoc UK 90(6):1241–1247

    Article  Google Scholar 

  • Grebmeier JM, Overland JE, Moore SE et al (2006) A major ecosystem shift in the northern Bering Sea. Science 311(5766):1461–1464

    Article  PubMed  CAS  Google Scholar 

  • Hirche HJ (1989) Egg production of the Arctic copepod Calanus glacialis: laboratory experiments. Mar Biol 103(3):311–318

    Article  Google Scholar 

  • Hirche HJ (1991) Distribution of dominant calanoid copepod species in the Greenland Sea during late fall. Polar Biol 11(6):351–362

    Article  Google Scholar 

  • Hirche HJ, Hagen W, Mumm N, Richter C (1994) The Northeast Water Polynya, Greenland Sea. III. Meso- and macrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol 14:491–503

    Article  Google Scholar 

  • Hopcroft RR, Kosobokova KN, Pinchuk AI (2010) Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep Sea Res Part II 57(1):27–39

    Article  Google Scholar 

  • Hunt GL, Blanchard AL, Boveng P et al (2013) The Barents and Chukchi Seas: comparison of two Arctic shelf ecosystems. J Mar Syst 109:43–68

    Article  Google Scholar 

  • Hunt BPV, Nelson RJ, Williams B et al (2014) Zooplankton community structure and dynamics in the Arctic Canada Basin during a period of intense environmental change (2004–2009). J Geophys Res Ocean 119(4):2518–2538

    Article  Google Scholar 

  • Jung MS, Nielsen TG (2015) Early development of Calanus glacialis and C. finmarchicus. Limnol Oceanogr 60(3):934–946

    Article  Google Scholar 

  • Kirby RR, Beaugrand G, Lindley JA (2008) Climate-induced effects on the meroplankton and the benthic-pelagic ecology of the North Sea. Limnol Oceanogr 53(5):1805–1815

    Article  Google Scholar 

  • Kwok R, Untersteiner N (2011) The thinning of Arctic sea ice. Phys Today 64(4):36–41

    Article  Google Scholar 

  • Lane PV, Lliná L, Smith SL, Pilz D (2008) Zooplankton distribution in the western Arctic during summer 2002: hydrographic habitats and implications for food chain dynamics. J Mar Syst 70(1):97–133

    Article  Google Scholar 

  • Lischka S, Hagen W (2005) Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol 28(12):910–921

    Article  Google Scholar 

  • Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res Ocean. https://doi.org/10.1029/2007GL031972

    Article  Google Scholar 

  • Matsuno K, Yamaguchi A, Hirawake T, Imai I (2011) Year-to-year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and 2007, 2008. Polar Biol 34(9):1349–1360

    Article  Google Scholar 

  • Mohan SD, Connelly TL, Harris CM, Dunton KH, McClelland JW (2016) Seasonal trophic linkages in Arctic marine invertebrates assessed via fatty acids and compound-specific stable isotopes. Ecosphere. https://doi.org/10.1002/ecs2.1429

    Article  Google Scholar 

  • Pickart RS, Schulze LM, Moore GWK, Charette MA, Arrigo KR, van Dijken G, Danielson SL (2013) Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea. Deep Sea Res Part I 79:106–121

    Article  Google Scholar 

  • Piepenburg D (2005) Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28(10):733–755

    Article  Google Scholar 

  • Pinchuk AI, Eisner LB (2017) Spatial heterogeneity in zooplankton summer distribution in the eastern Chukchi Sea in 2012–2013 as a result of large-scale interactions of water masses. Deep Sea Res Part II 135:27–39

    Article  CAS  Google Scholar 

  • Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41

    Article  Google Scholar 

  • Schlüter M, Rachor E (2001) Meroplankton distribution in the central Barents Sea in relation to local oceanographic patterns. Polar Biol 24(8):582

    Article  Google Scholar 

  • Shimada K, Kamoshida T, Itoh M et al (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett. https://doi.org/10.1029/2005GL025624

    Article  Google Scholar 

  • Slattery PN, Oliver JS (1987) Barnacle settlement on Pleustes Panopla Tuberculata (Amphipoda) in the Chukchi Sea. J Crustac Biol 7(2):358–363

    Article  Google Scholar 

  • Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep Sea Res Part II 55(20):2225–2244

    Article  CAS  Google Scholar 

  • Springer AM, McRoy CP, Turco KR (1989) The paradox of pelagic food webs in the northern Bering Sea—II. Zooplankton communities. Cont Shelf Res 9(4):359–386

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett. https://doi.org/10.1029/2007GL029703

    Article  Google Scholar 

  • Turner JT, Levinsen H, Nielsen TG, Hansen BW (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar Ecol Prog Ser 221:209–219

    Article  Google Scholar 

  • Vargas CA, Narváez DA, Piñones A, Navarrete SA, Lagos NA (2006) River plume dynamic influences transport of barnacle larvae in the inner shelf off central Chile. J Mar Biol Assoc UK 86(5):1057–1065

    Article  Google Scholar 

  • Walsh JJ, McRoy CP, Coachman LK (1989) Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog Oceanogr 22(4):277–359

    Article  Google Scholar 

  • Wang J, Cota GF, Comiso JC (2005) Phytoplankton in the Beaufort and Chukchi Seas: distribution, dynamics, and environmental forcing. Deep Sea Res Part II 52(24):3355–3368

    Article  Google Scholar 

  • Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61(1):39–54

    Article  Google Scholar 

  • Woodgate RA, Aagaard K, Weingartner TJ (2005) A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990–1991. Deep Sea Res Part II 52(24):3116–3149

    Article  Google Scholar 

  • Woodgate RA, Weingartner T, Lindsay R (2010) The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys Res Lett. https://doi.org/10.1029/2009GL041621

    Article  Google Scholar 

  • Woodgate RA, Stafford KM, Prahl FG (2015) A synthesis of year-round interdisciplinary mooring measurements in the Bering Strait (1990–2014) and the RUSALCA years (2004–2011). Oceanography 28(3):46–67

    Article  Google Scholar 

  • Zhang J, Ashjian C, Campbell R, Spitz YH, Steele M, Hill V (2015) The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Res Part I 118:122–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Zhencheng Tao, Yongshan Zhang, Yongqiang Wang, Shaoqing Wang as well as the captain and crew of the R/V ‘XUELONG’ for their help with zooplankton sampling. Dr. Guang Yang offered helpful advice regarding data analysis, and Dr. Xiaoyu Wang at the Ocean University of China provided hydrographic data. This research is supported by National Natural Science Foundation of China (Nos. 41706217, 41406148) and Chinese Polar Environment Comprehensive Investigation and Assessment Programmes (No. CHINARE-2017-03-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhang, G. & Sun, S. Inter-annual variation of the summer zooplankton community in the Chukchi Sea: spatial heterogeneity during a decade of rapid ice decline. Polar Biol 41, 1827–1843 (2018). https://doi.org/10.1007/s00300-018-2324-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2324-3

Keywords

Navigation