Skip to main content

Advertisement

Log in

High goose abundance reduces nest predation risk in a simple rodent-free high-Arctic ecosystem

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Breeding geese are the preferred prey of the Arctic fox Vulpes lagopus in the high-Arctic Svalbard archipelago. According to the apparent competition hypothesis (ACH), less-abundant prey species (e.g. ptarmigan, waders and small passerines) will experience higher predation rates when breeding in association with the more common prey (geese), due to spill-over predation by the shared predator. As many of these less-abundant species are endemic and/or red-listed, increased predation can have negative repercussions on their populations. We used a one-year baited artificial nest study to assess relative nest predation risk on Svalbard Rock Ptarmigan Lagopus muta hyperborea, small waders (Purple Sandpiper Calidris maritima, Dunlin Calidris alpina, plovers Charadrius spp., and phalaropes Phalaropus spp.) and Snow bunting Plectrophenax nivalis in two study locations contrasted by nesting density of Arctic breeding geese (Pink-footed Goose Anser brachyrhynchus and Barnacle Goose Branta leucopsis). We predicted higher predation risk for the less-abundant species in the study location with higher goose abundance. However, we found that relative nest predation risk was lower in the study location with higher goose abundance, thus being compatible with apparent mutualism and/or prey swamping mechanisms. Our results contrast with those from more structurally complex Arctic ecosystems and suggest that allochtonous subsidies from temperate ecosystems structure the predation pattern in this high-Arctic tundra ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aanes R, Saether BE, Solberg EJ, Aanes S, Strand O, Oritsland NA (2003) Synchrony in Svalbard reindeer population dynamics. Candian J Zool 81:103–110

    Article  Google Scholar 

  • Abrams PA, Matsuda H (1996) Positive indirect effects between prey species that share predators. Ecology 77:610–616

    Article  Google Scholar 

  • Abrams PA, Holt RD, Roth RD (1998) Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 79:201–212

    Article  Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918

    Article  Google Scholar 

  • Anderson HB, Madsen J, Fuglei E, Jensen GH, Woodin SJ, van der Wal R (2015) The dilemma of where to nest: influence of spring snow cover, food proximity and predator abundance on reproductive success of an Arctic-breeding migratory herbivore is dependent on nesting habitat choice. Polar Biol 38:153–162

    Article  Google Scholar 

  • Angelstam P (1986) Predation on ground-nesting birds nests in relation to predator densities and habitat edge. Oikos 47:365–373

    Article  Google Scholar 

  • Barraquand F, New LF, Redpath S, Matthiopoulos J (2015) Indirect effect of primary prey population dynamics on alternative prey. Theor Popul Biol 103:44–59

    Article  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Software 67

  • Bety J, Gauthier G, Giroux JF, Korpimaki E (2001) Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos 93:388–400

    Article  Google Scholar 

  • Bowen DE, Robel RJ, Watt PG (1976) Habitat and investigators influence artificial ground nest losses. Trans Kans Acad Sci 79:141–147

    Article  Google Scholar 

  • Cornell H (1976) Search strategies and adaptive significance of switching in some general predators. Am Naturalist 110:317–320

    Article  Google Scholar 

  • Eide NE, Jepsen JU, Prestrud P (2004) Spatial organization of reproductive Arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. J Anim Ecol 73:1056–1068

    Article  Google Scholar 

  • Eide NE, Eid PM, Prestrud P, Swenson JE (2005) Dietary responses of Arctic foxes Alopex lagopus to changing prey availability across an Arctic landscape. Wildl Biol 11:109–121

    Article  Google Scholar 

  • Eide NE, Stien A, Prestrud P, Yoccoz NG, Fuglei E (2012) Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population. J Anim Ecol 81:640–648

    Article  PubMed  Google Scholar 

  • Elvebakk A (1999) Bioclimatic delimitation and subdivision of the Arctic. In: Nordal I, Razzhivin VY (eds) The species concept in the high north – A panarctic flora initiative. Norske Videnskaps-Akademi, Oslo, pp 81–112

    Google Scholar 

  • Elvebakk A (2005) A vegetation map of Svalbard on the scale 1: 3.5 mill. Phytocoenologia 35:951–967

    Article  Google Scholar 

  • Fox TAD, Eide NE, Bergersen E, Madsen J (2009) Resource partitioning in sympatric Arctic-breeding geese: summer habitat use, spatial and dietary overlap of Barnacle and Pink-footed Geese in Svalbard. Ibis 151:122–133

    Article  Google Scholar 

  • Frafjord K (1993) Food habits of Arctic foxes (Alopex lagopus) on the Western coast of Svalbard. Arctic 46:49–54

    Article  Google Scholar 

  • Fuglei E, Oritsland NA, Prestrud P (2003) Local variation in Arctic fox abundance on Svalbard. Norway Polar Biol 26:93–98

    Google Scholar 

  • Gauthier G, Bêty J, Giroux JF, Rochefort L (2004) Trophic interactions in a high-Arctic snow goose colony. Integrative Comparat Biol 44:119–129

    Article  Google Scholar 

  • Giroux MA, Berteaux D, Lecomte N, Gauthier G, Szor G, Bety J (2012) Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator. J Anim Ecol 81:533–542

    Article  PubMed  Google Scholar 

  • Henriksen S, Hilmo O (2015) Norsk rødliste for arter 2015. Artsdatabanken, Trondheim (in Norwegian)

    Google Scholar 

  • Henttonen H, Fuglei E, Gower CN, Haukisalmi V, Ims RA, Niemimaa J, Yoccoz NG (2001) Echinococcus multilocularis on Svalbard: introduction of an intermediate host has enabled the local life-cycle. Parasitology 123:547–552

    Article  CAS  PubMed  Google Scholar 

  • Holt RD, Kotler BP (1987) Short-term apparent competition. Am Naturalist 130:412–430

    Article  Google Scholar 

  • Hoset KS, Espmark Y, Moksnes A, Haugan T, Ingebrigtsen M, Lier M (2004) Effect of ambient temperature on food provisioning and reproductive success in Snow buntings Plectrophenax nivalis in the high -Arctic. Ardea 92:239–246

    Google Scholar 

  • Iles DT, Rockwell RF, Matulonis P, Robertson GJ, Abraham KF, Davies JC, Koons DN (2013) Predators, alternative prey and climate influence annual breeding success of a long-lived sea duck. J Anim Ecol 82:683–693

    Article  PubMed  Google Scholar 

  • Ims RA (1990) On the adaptive value of reproductive synchrony as a predator-swamping strategy. Am Naturalist 136:485–498

    Article  Google Scholar 

  • Ims RA, Jepsen JU, Stien A, Yoccoz NG (2013) Science Plan for COAT: Climate-ecological Observatory for Arctic Tundra. Fram Centre, Tromsø

    Google Scholar 

  • Ims RA, Alsos IG, Fuglei E, Pedersen ÅØ, Yoccoz NG (2014) An assessment of MOSJ - The state of the terrestrial environment in Svalbard. Report 144, Norwegian Polar Institute, Tromsø

  • Jepsen JU, Eide NE, Prestrud P, Jacobsen LB (2002) The importance of prey distribution in habitat use by Arctic foxes (Alopex lagopus). Can J Zool 80:418–429

    Article  Google Scholar 

  • Johansen BE, Karlsen SR, Tommervik H (2012) Vegetation mapping of Svalbard utilising Landsat TM/ETM plus data. Polar Rec 48:47–63

    Article  Google Scholar 

  • Johnston V, Syroechkovskiy E, Crockford N, Lanctot RB, Millington S, Clay R, Donaldson G, Ekker M, Gilchrist G, Black A, Crawford R (2015) Arctic Migratory Birds Initiative (AMBI): Workplan 2015-2019. CAFF Strategies Series No. 6. Conservation of Arctic Flora and Fauna, Akureyri

  • Kovacs KM, Lydersen C (2006) Birds and mammals of Svalbard. Norwegian Polar Institute, Tromsø

    Google Scholar 

  • Legagneux P et al (2012) Disentangling trophic relationships in a high-Arctic tundra ecosystem through food web modeling. Ecology 93:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Legagneux P et al (2014) Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nature Climate Change 4:379–383

    Article  Google Scholar 

  • Lewis KP (2004) How important is the statistical approach for analyzing categorical data? a critique using artificial nests. Oikos 104:305–315

    Article  Google Scholar 

  • Madsen J et al (2007) Effects of snow cover on the timing and success of reproduction in high-Arctic pink-footed geese Anser brachyrhynchus. Polar Biol 30:1363–1372

    Article  Google Scholar 

  • Madsen J et al (2016) Svalbard pink-footed goose population status report 2015-2016. Technical report from Danish Centre for Environment and Energy, no. 83. Aarhus University and Danish Centre for Environment and Energy, Aarhus

  • Manzer DL, Hannon SJ (2005) Relating grouse nest success and corvid density to habitat: a multi-scale approach. J Wildl Management 69:110–123

    Article  Google Scholar 

  • McKinnon L, Bêty J (2009) Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J Field Ornithol 80(3):280–288

    Article  Google Scholar 

  • McKinnon L et al (2010) Lower predation risk for migratory birds at high latitudes. Science 327:326–327

    Article  CAS  PubMed  Google Scholar 

  • McKinnon L, Berteaux D, Gauthier G, Bety J (2013) Predator-mediated interactions between preferred, alternative and incidental prey in the Arctic tundra. Oikos 122:1042–1048

    Article  Google Scholar 

  • McKinnon L, Berteaux D, Bêty J (2014) Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131(4):619–628

    Article  Google Scholar 

  • Mehlum F, Black J, Madsen Je (1998) Research on Arctic geese: proceedings of the Svalbard goose symposium, Oslo, Norway, 23–26 September 1997. Report 200, Norwegian Polar Institute, Tromsø

  • Mitchell C et al (2010) Trends in goose numbers wintering in Britain & Ireland, 1995 to 2008. Ornis Svecica 20:128–143

    Google Scholar 

  • Moore RP, Robinson WD (2004) Artificial bird nests, external validity, and bias in ecological field studies. Ecology 85:1562–1567

    Article  Google Scholar 

  • Pedersen ÅØ, Bårdsen BJ, Veiberg V, Hansen BB (2014) Jegernes egne data analyser av jaktstatistikk og kjevemateriale fra svalbardrein. Norsk Polarinstitutt, Tromsø (in Norwegian)

    Google Scholar 

  • Prestrud P (1992) Food-habits and observations of the hunting behavior of Arctic foxes, Alopex-Lagopus, in Svalbard. Canadian Field Naturalist 106:225–236

    Google Scholar 

  • Robertson GJ (1995) Factors affecting nest site selection and nesting success in the common eider Somateria mollissima. Ibis 137:109–115

    Article  Google Scholar 

  • Roth JD (2003) Variability in marine resources affects Arctic fox population dynamics. J Anim Ecol 72:668–676

    Article  Google Scholar 

  • Soininen E, Fuglei E, Pedersen ÅØ (2016) Complementary use of density estimates and hunting statistics: different sides of the same story? Eur J Wildl Res 62(2):151–160

    Article  Google Scholar 

  • Steen JB, Unander S (1985) Breeding biology of the Svalbard Rock Ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:191–197

    Article  Google Scholar 

  • Storch I (1991) Habitat fragmentation, nest site selection, and nest predation risk in capercaillie. Ornis Scand 22:213–217

    Article  Google Scholar 

  • Summers RW, Nicoll M (2004) Geographical variation in the breeding biology of the Purple Sandpiper Calidris maritima. Ibis 146:303–313

    Article  Google Scholar 

  • Tombre IM, Black JM, Loonen MJJE (1998) Critical components in the dynamics of a barnacle goose colony: a sensitivity analysis. Norwegian Polar Institute, Tromsø

    Google Scholar 

  • Villard MA, Part T (2004) Don’t put all your eggs in real nests: a sequel to Faaborg. Conserv Biol 18:371–372

    Article  Google Scholar 

  • Wisz M et al (2008) Modelling pink-footed goose (Anser brachyrhynchus) wintering distributions for the year 2050: potential effects of land-use change in Europe. Divers and Distrib 14:721–773

    Article  Google Scholar 

Download references

Funding

Funding for this study was provided by the Fram Centre, the Norwegian Polar Institute, the Norwegian Institute for Nature Research and the University Centre in Svalbard. We thank the field assistants for their hard work in the field: Kaisa Boll, Daniels Karin Amby, Charmain Hamilton, Aino M. Kokkonen, Inka Lipasti, Yann Rashid, Silje Rekdal Larsen and Simon Rilling. We also thank Jesper Madsen and two anonymous reviewers and the chief-editor, Dieter Piepenburg, for valuable comments on the earlier version of the manuscript; Virve Ravolainen for assistance with the vegetation data; and Oddveig Øien Ørvoll for graphical design of maps. The study complied with the current regulations in the Svalbard Environmental Protection Act.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åshild Ø. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, Å.Ø., Stien, J., Eidesen, P.B. et al. High goose abundance reduces nest predation risk in a simple rodent-free high-Arctic ecosystem. Polar Biol 41, 619–627 (2018). https://doi.org/10.1007/s00300-017-2223-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2223-z

Keywords

Navigation