Skip to main content

Advertisement

Log in

Annual particulate matter and diatom export in a high nutrient, low chlorophyll area of the Southern Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Upper ocean plankton assemblages are known to influence the export of carbon and biominerals from the mixed layer. However, relationships between plankton community structure and the magnitude and stoichiometry of export remain poorly characterized. We present data on biogeochemical and diatom export fluxes from the annual deployment of a sediment trap in a High Nutrient, Low Chlorophyll (HNLC) area upstream of the Kerguelen Plateau (KERFIX station). The weak and tidal-driven circulation provided favorable conditions for a quantitative analysis of export processes. Particulate organic carbon (POC) fluxes were highest in spring and summer. Biogenic silica (BSi) fluxes displayed similar seasonal patterns, although BSi:POC ratios were elevated in winter. Fragilariopsis kerguelensis dominated the annual diatom export assemblage (59.8% of the total valve flux). We identified clusters of diatom species that were positively or negatively correlated to the BSi:POC ratio. Our results indicate that the differential role of certain diatom species for carbon and silicon export, previously identified from iron-fertilized productive areas, is also valid in HNLC regimes. Although annual POC export below the mixed layer of the HNLC site is twofold lower that the one previously reported in a naturally iron-fertilized area of the Kerguelen Plateau, the fraction of seasonal net community production exported is similar at both sites (~1.5%). These findings suggest that natural iron fertilization increases the strength but not the efficiency of carbon export from the mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat 2:97–106. doi:10.1002/wics.51

    Article  Google Scholar 

  • Alldredge AL, Gotschalk C, Passow U, Riebesell U (1995) Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res Part II 42:9–27. doi:10.1016/0967-0645(95)00002-8

    Article  CAS  Google Scholar 

  • Alvain S, Le Quéré C, Bopp L et al (2013) Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens Environ 132:195–201. doi:10.1016/j.rse.2013.01.014

    Article  Google Scholar 

  • Aminot A, Kerouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ifremer, Plouzané

    Google Scholar 

  • Assmy P, Smetacek V, Montresor M et al (2013) Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci 110:20633–20638. doi:10.1073/pnas.1309345110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker ET, Milburn HB, Tennant DA (1988) Field assessment of sediment trap efficiency under varying flow conditions. J Mar Res 46:573–592. doi:10.1357/002224088785113522

    Article  CAS  Google Scholar 

  • Bárcena MA, Abrantes F (1998) Evidence of a high-productivity area off the coast of Málaga from studies of diatoms in surface sediments. Mar Micropaleontol 35:91–103. doi:10.1016/S0377-8398(98)00012-7

    Article  Google Scholar 

  • Bergami C, Capotondi L, Langone L et al (2009) Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica). Mar Micropaleontol 73:37–48. doi:10.1016/j.marmicro.2009.06.007

    Article  Google Scholar 

  • Blain S, Tréguer P, Belviso S et al (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep Sea Res Part I 48:163–187. doi:10.1016/S0967-0637(00)00047-9

    Article  CAS  Google Scholar 

  • Blain S, Quéguiner B, Armand L et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1074. doi:10.1038/nature05700

    Article  CAS  PubMed  Google Scholar 

  • Blain S, Quéguiner B, Trull T (2008) The natural iron fertilization experiment KEOPS (KErguelen Ocean and Plateau compared Study): an overview. Deep Sea Res Part II 55:559–565. doi:10.1016/j.dsr2.2008.01.002

    Article  Google Scholar 

  • Blain S, Capparos J, Guéneuguès A et al (2015) Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences 12:623–635. doi:10.5194/bg-12-623-2015

    Article  CAS  Google Scholar 

  • Booth BC, Larouche P, Bélanger S et al (2002) Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res Part II 49:5003–5025. doi:10.1016/S0967-0645(02)00175-3

    Article  CAS  Google Scholar 

  • Boyd PW, Newton PP (1995) Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep Sea Res Part I 42:619–639. doi:10.1016/0967-0637(95)00017-Z

    Article  Google Scholar 

  • Boyd PW, Newton PP (1999) Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res Part I 46:63–91. doi:10.1016/S0967-0637(98)00066-1

    Article  CAS  Google Scholar 

  • Boyd PW, Dillingham PW, McGraw CM et al (2016) Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Clim Change 6:207–213. doi:10.1038/nclimate2811

    Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28:1182–1198. doi:10.4319/lo.1983.28.6.1182

    Article  CAS  Google Scholar 

  • Buesseler KO, Antia AN, Chen M et al (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416

    Article  CAS  Google Scholar 

  • Buesseler KO, McDonnell AMP, Schofield OME et al (2010) High particle export over the continental shelf of the west Antarctic Peninsula. Geophys Res Lett 37:L22606. doi:10.1029/2010GL045448

    Article  CAS  Google Scholar 

  • Carlotti F, Thibault-Botha D, Nowaczyk A, Lefèvre D (2008) Zooplankton community structure, biomass and role in carbon fluxes during the second half of a phytoplankton bloom in the eastern sector of the Kerguelen Shelf (January–February 2005). Deep Sea Res Part II 55:720–733. doi:10.1016/j.dsr2.2007.12.010

    Article  Google Scholar 

  • Cavagna AJ, Fripiat F, Elskens M et al (2015) Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean. Biogeosciences 12:6515–6528. doi:10.5194/bg-12-6515-2015

    Article  Google Scholar 

  • Cavan EL, Le Moigne FAC, Poulton AJ et al (2015) Zooplankton fecal pellets control the attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean. Geophys Res Lett. doi:10.1002/2014GL062744

    Google Scholar 

  • Coppola L, Roy-Barman M, Wassmann P et al (2002) Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea. Mar Chem 80:11–26. doi:10.1016/S0304-4203(02)00071-3

    Article  CAS  Google Scholar 

  • Crosta X, Romero O, Armand LK, Pichon J-J (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeogr Palaeoclimatol Palaeoecol 223:66–92. doi:10.1016/j.palaeo.2005.03.028

    Article  Google Scholar 

  • Davidson AT, McKinley J, Westwood K et al (2016) Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities. Mar Ecol Prog Ser 552:93–113. doi:10.3354/meps11742

    Article  CAS  Google Scholar 

  • de Baar HJW, Buma AGJ, Nolting RF et al (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122. doi:10.3354/meps065105

    Article  Google Scholar 

  • de Baar HJW, de Jong JTM, Bakker DCE et al (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415. doi:10.1038/373412a0

    Article  Google Scholar 

  • Dehairs F, Jeandel C, Cattaldo T et al (1996) Barium-barite as a tracer of export production: some information from the water column. In: Ragueneau O (ed) Proceedings of the symposium OPALEO. Brest, pp 175–192

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732. doi:10.1016/0016-7037(81)90006-5

    Article  CAS  Google Scholar 

  • Fiala M, Kopczynska EE, Jeandel C et al (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J Plankton Res 20:1341–1356. doi:10.1093/plankt/20.7.1341

    Article  Google Scholar 

  • Fischer G, Gersonde R, Wefer G (2002) Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea-ice zone and in the Polar Front Region: Interannual variations and differences in composition. Deep Sea Res Part II 49:1721–1745. doi:10.1016/S0967-0645(02)00009-7

    Article  CAS  Google Scholar 

  • Gardner WD (1980) Field assessment of sediment traps. J Mar Res 38:41–52

    Google Scholar 

  • Grigorov I, Rigual-Hernandez AS, Honjo S et al (2014) Settling fluxes of diatoms to the interior of the Antarctic circumpolar current along 170°W. Deep Sea Res Part I 93:1–13. doi:10.1016/j.dsr.2014.07.008

    Article  Google Scholar 

  • Guidi L, Legendre L, Reygondeau G et al (2015) A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob Biogeochem Cycles 29:1044–1059. doi:10.1002/2014GB005063

    Article  CAS  Google Scholar 

  • Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843. doi:10.1038/nature01416

    Article  CAS  PubMed  Google Scholar 

  • Hasle GR, Syvertsen EE (1997) Chapter 2 - Marine Diatoms. In: Tomas CR (ed) Identifying Marine Phytoplankton. Academic Press, San Diego, pp 5–385

    Chapter  Google Scholar 

  • Hawley N (1988) Flow in cylindrical sediment traps. J Great Lakes Res 14:76–88. doi:10.1016/S0380-1330(88)71534-8

    Article  Google Scholar 

  • Henson SA, Beaulieu C, Lampitt R (2016) Observing climate change trends in ocean biogeochemistry: when and where. Glob Chang Biol 22:1561–1571. doi:10.1111/gcb.13152

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221. doi:10.1016/j.pocean.2008.06.001

    Article  Google Scholar 

  • Huntley ME, Lopez MD, Karl DM (1991) Top predators in the Southern ocean: a major leak in the biological carbon pump. Science 253:64–66. doi:10.1126/science.1905841

    Article  CAS  PubMed  Google Scholar 

  • Jacquet SH, Lam PJ, Trull T, Dehairs F (2011) Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep Sea Res Part 2(58):2277–2292. doi:10.1016/j.dsr2.2011.05.035

    Article  CAS  Google Scholar 

  • Jeandel C, Ruiz-Pino D, Gjata E et al (1998) KERFIX, a time-series station in the Southern Ocean: a presentation. J Mar Syst 17:555–569. doi:10.1016/S0924-7963(98)00064-5

    Article  Google Scholar 

  • Jouandet MP, Blain S, Metzl N et al (2008) A seasonal carbon budget for a naturally iron-fertilized bloom over the Kerguelen Plateau in the Southern Ocean. Deep Sea Res Part II 255:856–867. doi:10.1016/j.dsr2.2007.12.037

    Article  Google Scholar 

  • Jungandreas A, Wagner H, Wilhelm C (2012) Simultaneous measurement of the silicon content and physiological parameters by FTIR spectroscopy in diatoms with siliceous cell walls. Plant Cell Physiol 53:2153–2162. doi:10.1093/pcp/pcs144

    Article  CAS  PubMed  Google Scholar 

  • Kopczyńska EE, Fiala M, Jeandel C (1998) Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean. Polar Biol 20:342–351. doi:10.1007/s003000050312

    Article  Google Scholar 

  • Lam PJ, Bishop JKB (2007) High biomass, low export regimes in the Southern Ocean. Deep Sea Res Part II 54:601–638. doi:10.1016/j.dsr2.2007.01.013

    Article  Google Scholar 

  • Lam PJ, Doney SC, Bishop JKB (2011) The dynamic ocean biological pump: insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob Biogeochem Cycles 25:GB3009. doi:10.1029/2010GB003868

    Article  CAS  Google Scholar 

  • Laurenceau-Cornec EC, Trull TW, Davies DM et al (2015) Phytoplankton morphology controls on marine snow sinking velocity. Mar Ecol Prog Ser 520:35–56. doi:10.3354/meps11116

    Article  Google Scholar 

  • Laws EA, D’Sa E, Naik P (2011) Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol Oceanogr Methods 9:593–601. doi:10.4319/lom.2011.9.593

    Article  Google Scholar 

  • Le Moigne FAC, Henson SA, Cavan E et al (2016) What causes the inverse relationship between primary production and export efficiency in the Southern Ocean? Geophys Res Lett 14:54–86. doi:10.1002/2016GL068480

    Google Scholar 

  • Lombard F, Labeyrie L, Michel E et al (2011) Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach. Biogeosciences 8:853–873. doi:10.5194/bg-8-853-2011

    Article  Google Scholar 

  • Louanchi F, Ruiz-Pino DP, Jeandel C et al (2001) Dissolved inorganic carbon, alkalinity, nutrient and oxygen seasonal and interannual variations at the Antarctic Ocean JGOFS-KERFIX site. Deep Sea Res Part I 48:1581–1603. doi:10.1016/S0967-0637(00)00086-8

    Article  CAS  Google Scholar 

  • Maiti K, Charette MA, Buesseler KO, Kahru M (2013) An inverse relationship between production and export efficiency in the Southern Ocean. Geophys Res Lett 40:1557–1561. doi:10.1002/grl.50219

    Article  Google Scholar 

  • Maraldi C, Lyard F, Testut L, Coleman R (2011) Energetics of internal tides around the Kerguelen Plateau from modeling and altimetry. J Geophys Res Oceans 116:C06004. doi:10.1029/2010JC006515

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158. doi:10.1038/345156a0

    Article  CAS  Google Scholar 

  • Matsuno K, Yamaguchi A, Fujiwara A et al (2014) Seasonal changes in mesozooplankton swimmers collected by sediment trap moored at a single station on the Northwind Abyssal Plain in the western Arctic Ocean. J Plankton Res 36:490–502. doi:10.1093/plankt/fbt092

    Article  Google Scholar 

  • McEwen GF, Johnson MW, Folsom TR (1954) A statistical analysis of the performance of the folsom plankton sample splitter, based upon test observations. Arch Meteorol Geophys Biocl A 7:502–527. doi:10.1007/BF02277939

    Article  Google Scholar 

  • McQuoid MR, Hobson LA (1996) Diatom Resting Stages. J Phycol 32:889–902. doi:10.1111/j.0022-3646.1996.00889.x

    Article  Google Scholar 

  • Merlivat L, Boutin J, Antoine D (2015) Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: new insights from CARIOCA pCO2. J Mar Syst 147:9–20. doi:10.1016/j.jmarsys.2014.04.015

    Article  Google Scholar 

  • Minas H, Minas M (1992) Net community production in high nutrient-low chlorophyll waters of the tropical and antarctic oceans—grazing vs iron hypothesis. Oceanol Acta 15:145–162

    CAS  Google Scholar 

  • Minas HJ, Minas M, Packard TT (1986) Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnol Oceanogr 31:1182–1206. doi:10.4319/lo.1986.31.6.1182

    Article  CAS  Google Scholar 

  • Miquel JC, Fowler SW, La Rosa J, Buat-Menard P (1994) Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea. Deep Sea Res Part I 41:243–261. doi:10.1016/0967-0637(94)90002-7

    Article  CAS  Google Scholar 

  • Moore CM, Hickman AE, Poulton AJ et al (2007) Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX): II—Taxonomic responses and elemental stoichiometry. Deep Sea Res Part II 54:2066–2084. doi:10.1016/j.dsr2.2007.06.015

    Article  CAS  Google Scholar 

  • Morris PJ, Sanders R, Turnewitsch R, Thomalla S (2007) 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep Sea Res Part II 54:2208–2232. doi:10.1016/j.dsr2.2007.06.002

    Article  CAS  Google Scholar 

  • Mortyn PG, Charles CD (2003) Planktonic foraminiferal depth habitat and δ18O calibrations: plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography 18:1037. doi:10.1029/2001PA000637

    Article  Google Scholar 

  • Mosseri J, Quéguiner B, Rimmelin P et al (2005) Silica fluxes in the northeast Atlantic frontal zone of Mode Water formation (38°–45°N, 16°–22°W) in 2001–2002. J Geophys Res Oceans 110:C07S19. doi:10.1029/2004JC002615

    Article  CAS  Google Scholar 

  • Mosseri J, Quéguiner B, Armand L, Cornet-Barthaux V (2008) Impact of iron on silicon utilization by diatoms in the Southern Ocean: A case study of Si/N cycle decoupling in a naturally iron-enriched area. Deep Sea Res Part II 55:801–819. doi:10.1016/j.dsr2.2007.12.003

    Article  Google Scholar 

  • Muggli DL, Harrison PJ (1997) Effects of iron on two oceanic phytoplankters grown in natural NE subarctic pacific seawater with no artificial chelators present. J Exp Mar Biol Ecol 212:225–237. doi:10.1016/S0022-0981(96)02752-9

    Article  CAS  Google Scholar 

  • Nodder SD, Alexander BL (1999) The effects of multiple trap spacing, baffles and brine volume on sediment trap collection efficiency. J Mar Res 57:537–559. doi:10.1357/002224099764805183

    Article  Google Scholar 

  • Obernosterer I, Christaki U, Lefèvre D et al (2008) Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep Sea Res Part II 55:777–789. doi:10.1016/j.dsr2.2007.12.005

    Article  Google Scholar 

  • Park Y-H, Charriaud E, Pino DR, Jeandel C (1998) Seasonal and interannual variability of the mixed layer properties and steric height at station KERFIX, southwest of Kerguelen. J Mar Syst 17:571–586. doi:10.1016/S0924-7963(98)00065-7

    Article  Google Scholar 

  • Park Y-H, Fuda J-L, Durand I, Naveira Garabato AC (2008a) Internal tides and vertical mixing over the Kerguelen Plateau. Deep Sea Res Part II 55:582–593. doi:10.1016/j.dsr2.2007.12.027

    Article  Google Scholar 

  • Park Y-H, Roquet F, Durand I, Fuda J-L (2008b) Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res Part II 55:566–581. doi:10.1016/j.dsr2.2007.12.030

    Article  Google Scholar 

  • Planchon F, Ballas D, Cavagna A-J et al (2015) Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences 12:3831–3848. doi:10.5194/bg-12-3831-2015

    Article  CAS  Google Scholar 

  • Pollard R, Sanders R, Lucas M, Statham P (2007) The Crozet natural iron bloom and export experiment (CROZEX). Deep Sea Res Part II 54:1905–1914. doi:10.1016/j.dsr2.2007.07.023

    Article  CAS  Google Scholar 

  • Pollard RT, Salter I, Sanders RJ et al (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457:577–580. doi:10.1038/nature07716

    Article  CAS  PubMed  Google Scholar 

  • Pondaven P, Fravalo C, Ruiz-Pino D et al (1998) Modelling the silica pump in the permanently open Ocean Zone of the Southern Ocean. J Mar Syst 17:587–619. doi:10.1016/S0924-7963(98)00066-9

    Article  Google Scholar 

  • Pondaven P, Ruiz-Pino D, Fravalo C et al (2000) Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995 – a 1-D modelling study. Deep Sea Res Part I 47:223–257. doi:10.1016/S0967-0637(99)00053-9

    Article  CAS  Google Scholar 

  • Quéguiner B (2013) Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean. Deep Sea Res Part II 90:43–54. doi:10.1016/j.dsr2.2012.07.024

    Article  CAS  Google Scholar 

  • Razouls S, Réau GD, Guillot P et al (1998) Seasonal abundance of copepod assemblages and grazing pressure in the Kerguelen Island area (Southern Ocean). J Plankton Res 20:1599–1614. doi:10.1093/plankt/20.8.1599

    Article  Google Scholar 

  • Rembauville M, Blain S, Armand L et al (2015a) Export fluxes in a naturally iron-fertilized area of the Southern Ocean—Part 2: importance of diatom resting spores and faecal pellets for export. Biogeosciences 12:3171–3195. doi:10.5194/bg-12-3171-2015

    Article  CAS  Google Scholar 

  • Rembauville M, Salter I, Leblond N et al (2015b) Export fluxes in a naturally iron-fertilized area of the Southern Ocean—Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12:3153–3170. doi:10.5194/bg-12-3153-2015

    Article  Google Scholar 

  • Rembauville M, Manno C, Tarling GA et al (2016a) Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res Part I 115:22–35. doi:10.1016/j.dsr.2016.05.002

    Article  CAS  Google Scholar 

  • Rembauville M, Meilland J, Ziveri P et al (2016b) Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau. Deep Sea Res Part I 111:91–101. doi:10.1016/j.dsr.2016.02.017

    Article  CAS  Google Scholar 

  • Rigual-Hernández AS, Trull TW, Bray SG et al (2015a) Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump. Biogeosciences 12:5309–5337. doi:10.5194/bg-12-5309-2015

    Article  Google Scholar 

  • Rigual-Hernández AS, Trull TW, Bray SG et al (2015b) Seasonal dynamics in diatom and particulate export fluxes to the deep sea in the Australian sector of the southern Antarctic Zone. J Mar Syst 142:62–74. doi:10.1016/j.jmarsys.2014.10.002

    Article  Google Scholar 

  • Romero OE, Armand L (2010) Marine diatoms as indicators of modern changes in oceanographic conditions. In: Smol J, Stoermer E (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 373–400. doi:10.1017/CBO9780511763175.021

    Chapter  Google Scholar 

  • Romero OE, Lange CB, Fisher G et al (1999) Variability in export prodution documented by downward fluxes and species composition of marine planktonic diatoms: observations from the tropical and equatorial Atlantic. In: Fisher G, Wefer G (eds) The use of proxies in paleoceanography, examples from the South Atlantic. Springer, Berlin, pp 365–392. doi:10.1007/978-3-642-58646-0_14

    Chapter  Google Scholar 

  • Saavedra-Pellitero M, Baumann K-H, Flores J-A, Gersonde R (2014) Biogeographic distribution of living coccolithophores in the Pacific sector of the Southern Ocean. Mar Micropaleontol 109:1–20. doi:10.1016/j.marmicro.2014.03.003

    Article  Google Scholar 

  • Sadeghi A, Dinter T, Vountas M et al (2012) Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences 9:2127–2143. doi:10.5194/bg-9-2127-2012

    Article  Google Scholar 

  • Salter I, Lampitt RS, Sanders R et al (2007) Estimating carbon, silica and diatom export from a naturally fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: A novel drifting sediment trap. Deep Sea Res Part II 54:2233–2259. doi:10.1016/j.dsr2.2007.06.008

    Article  CAS  Google Scholar 

  • Salter I, Kemp AES, Moore CM et al (2012) Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean. Glob Biogeochem Cycles 26:GB1014. doi:10.1029/2010GB003977

    Article  CAS  Google Scholar 

  • Salter I, Galand PE, Fagervold SK et al (2014a) Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. doi:10.1038/ismej.2014.129

    PubMed  PubMed Central  Google Scholar 

  • Salter I, Schiebel R, Ziveri P et al (2014b) Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone. Nat Geosci 7:885–889. doi:10.1038/ngeo2285

    Article  CAS  Google Scholar 

  • Savoye N, Trull TW, Jacquet SHM et al (2008) 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep Sea Res Part II 55:841–855. doi:10.1016/j.dsr2.2007.12.036

    Article  Google Scholar 

  • Schrader HJ, Gersonde R (1978) Diatoms and silicofagellates. Micropaleontological counting methods and techniques: an exercise on an eight metres section of the Lower Pliocene of Capo Rosello, Sicily. Utrecht Micropaleontol Bull 129–176

  • Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426. doi:10.1016/S0098-3004(01)00044-9

    Article  Google Scholar 

  • Sell DW, Evans MS (1982) A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiologia 94:223–230. doi:10.1007/BF00016403

    Article  Google Scholar 

  • Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558. doi:10.1017/S0954102004002317

    Article  Google Scholar 

  • Smetacek V, Klaas C, Strass VH et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319. doi:10.1038/nature11229

    Article  CAS  PubMed  Google Scholar 

  • Stukel MR, Asher E, Couto N et al (2015) The imbalance of new and export production in the western Antarctic Peninsula, a potentially “leaky” ecosystem. Glob Biogeochem Cycles 29:GB005211. doi:10.1002/2015GB005211

    Article  CAS  Google Scholar 

  • Tarling GA, Ward P, Atkinson A et al (2012) DISCOVERY 2010: Spatial and temporal variability in a dynamic polar ecosystem. Deep Sea Res Part II Top Stud Oceanogr 59–60:1–13. doi:10.1016/j.dsr2.2011.10.001

    Article  Google Scholar 

  • Ternois Y, Sicre M-A, Boireau A et al (1998) Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean. Org Geochem 28:489–501. doi:10.1016/S0146-6380(98)00008-4

    Article  CAS  Google Scholar 

  • Tesi T, Langone L, Ravaioli M et al (2012) Particulate export and lateral advection in the Antarctic Polar Front (Southern Pacific Ocean): one-year mooring deployment. J Mar Syst 105–108:70–81. doi:10.1016/j.jmarsys.2012.06.002

    Article  Google Scholar 

  • Twining BS, Baines SB, Fisher NS (2004) Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol Oceanogr 49:2115–2128. doi:10.4319/lo.2004.49.6.2115

    Article  CAS  Google Scholar 

  • Tyrrell T, Merico A, Waniek JJ et al (2005) Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions. J Geophys Res Biogeosci 110:G02007. doi:10.1029/2005JG000041

    Article  CAS  Google Scholar 

  • Winter A, Henderiks J, Beaufort L et al (2014) Poleward expansion of the coccolithophore Emiliania huxleyi. J Plankton Res 36:316–325. doi:10.1093/plankt/fbt110

    Article  Google Scholar 

  • Zielinski U, Gersonde R (1997) Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 129:213–250. doi:10.1016/S0031-0182(96)00130-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank Catherine Jeandel, P. I. of the KERFIX project. Diatom taxonomy analyses were performed by J. J. Pichon at the EPOC laboratory. We thank Damien Cardinal for providing the freeze-dried material for BSi analyses. The International Atomic Energy Agency is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories. This work was supported by the Centre National de la Recherche Scientifique (CNRS–INSU), the Institut Polaire Paul Emile Victor (IPEV), and the project SOCLIM of climate initiative (Fondation BNP Paribas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rembauville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rembauville, M., Salter, I., Dehairs, F. et al. Annual particulate matter and diatom export in a high nutrient, low chlorophyll area of the Southern Ocean. Polar Biol 41, 25–40 (2018). https://doi.org/10.1007/s00300-017-2167-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2167-3

Keywords

Navigation