Skip to main content
Log in

TALE-based organellar genome editing and gene expression in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants.

Abstract

Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

There are no supplementary data.

References

  • Arimura SI (2021) Effects of mitoTALENs-directed double-strand breaks on plant mitochondrial genomes. Genes 12:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arimura SI, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, Watari Y, Yanase S, Yamauchi T, Itoh T, Toyoda A, Takanashi H, Tsutsumi N (2020) Targeted gene disruption of ATP synthases 6–1 and 6–2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. Plant J 104:1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Ayabe H, Toyoda A, Iwamoto A, Tsutsumi N, Arimura SI (2023) Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number. Plant Physiol 00:1–20

    Google Scholar 

  • Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker S, Boch J (2021) TALE and TALEN genome editing technologies. Gene Genome Edit 2:100007

    Article  CAS  Google Scholar 

  • Bi R, Li Y, Xu M, Zheng Q, Zhang DF, Li X, Yao YG (2022) Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. Innovation (Camb) 3(6):100329

    PubMed  CAS  Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  PubMed  CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23(2):279–291

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Liu B, Jiang Y, Cao D, Liu Y, Li Y (2023) Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco. Funct Integr Genomics 23(3):205

    Article  PubMed  CAS  Google Scholar 

  • Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC (2017) Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. Bot Stud 58(1):1–14

    Article  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  PubMed  CAS  Google Scholar 

  • Chen TC, Su YY, Wu CH, Liu YC, Huang CH, Chang CC (2020) Analysis of mitochondrial genomics and transcriptomics reveal abundant RNA edits and differential editing status in moth orchid Phalaenopsis aphrodite subsp formosana. Sci Hortic 267:109304

    Article  CAS  Google Scholar 

  • Cho SI, Lee S, Mok YG, Lim K, Lee J, Lee JM, Kim JS (2022) Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185(10):1764–1776

    Article  PubMed  CAS  Google Scholar 

  • Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3:1697–1705

    Article  PubMed  Google Scholar 

  • Doyle EL, Booher NJ, Standage DS et al (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans-Roberts KM, Mitchenall LA, Wall MK, Leroux J, Mylne JS, Maxwell A (2016) DNA gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana. J Biol Chem 291:3136–3144

    Article  PubMed  CAS  Google Scholar 

  • Forner J, Kleinschmidt D, Meyer EH, Fischer A, Morbitzer R, Lahaye T, Bock R (2022) Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nat Plants 8(3):245–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forner J, Kleinschmidt D, Meyer EH, Gremmels J, Morbitzer R, Lahaye T, Bock R (2023) Targeted knockout of a conserved plant mitochondrial gene by genome editing. Nat Plants 9:1818–1831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colas des Francs-Small C, Small I (2014) Surrogate mutants for studying mitochondrially encoded functions. Biochimie 100:234–242

    Article  PubMed  CAS  Google Scholar 

  • Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFN s for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gammage PA, Moraes CT, Minczuk M (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet 34(2):101–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammani K, FrancsSmall CC, Takenaka M, Tanz SK, Okuda K, Shikanai T, Small I (2011) The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria. J Biol Chem 286(24):21361–21371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedtke B, Wagner I, Börner T, Hess WR (1999) Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J 19:635–643

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Borner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    Article  PubMed  CAS  Google Scholar 

  • Hsieh WY, Liao JC, Chang CY, Harrison T, Boucher C, Hsieh MH (2015) The SLOW GROWTH3 pentatricopeptide repeat protein is required for the splicing of mitochondrial NADH dehydrogenase subunit7 intron 2 in Arabidopsis. Plant Physiol 168(2):490–501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu J, Sun Y, Li B, Liu Z, Wang Z, Gao Q, Gao C (2023) Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01910-9

  • Huang CH, Liu YC, Shen JY, Lu FI, Shaw SY, Huang HJ, Chang CC (2021) Repairing TALEN-mediated double-strand break by microhomology-mediated recombination in tobacco plastids generates abundant subgenomic DNA. Plant Sci 313:111028

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Shukla S, Yang C, Zhang M, Fatma Z, Lingamaneni M, Zhao H et al (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 12:1–10

    Article  CAS  Google Scholar 

  • Jheng CF, Chen TC, Lin JY, Chen TC, Wu WL, Chang CC (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci 190:62–73

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240(4858):1538–1541

    Article  ADS  PubMed  CAS  Google Scholar 

  • Kang BC, Bae SJ, Lee S, Lee JS, Kim A, Lee H, Kim JS (2021) Chloroplast and mitochondrial DNA editing in plants. Nat Plants 7(7):899–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazama T, Arimura SI (2023) A method for precisely identifying modifications to plant mitochondrial genomes by mitoTALENs. Mitochondrial DNA: methods and protocols. Springer, New York, pp 365–378

    Chapter  Google Scholar 

  • Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, Sugaya H, Toyoda A, Itoh T, Tsutsumi N et al (2019) Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plants 5:722–730

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kang BC, Bae SJ, Lee S, Lee JS, Kim A, Lee H, Baek G, Seo H, Kim J, Kim J (2021) Chloroplast and mitochondrial DNA editing in plants. Nat Plants 7:899–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Chen J (2024) Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 25(1):34–45

  • Kuwabara K, Arimura SI, Shirasawa K, Ariizumi T (2022) orf137 triggers cytoplasmic male sterility in tomato. Plant Physiol 189(2):465–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larosa V, Remacle C (2013) Transformation of the mitochondrial genome. Int J Develop Biol 57(678):659–665

    Article  CAS  Google Scholar 

  • Li D, Tang N, Fang Z, Xia Y, Cao M (2016) Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. J Nanosci Nanotechnol 16:12194–12201

    Article  CAS  Google Scholar 

  • Li R, Char SN, Liu B, Liu H, Li X, Yang B (2021) High-efficiency plastome base editing in rice with TAL cytosine deaminase. Mol Plant 14(9):1412–1414

    Article  PubMed  CAS  Google Scholar 

  • Lin JY, Lin BY, Chang CD, Liao SC, Liu YC, Wu WL, Chang CC (2015) Evaluation of chloroplast DNA markers for distinguishing Phalaenopsis species. Sci Hortic 192:302–310

    Article  CAS  Google Scholar 

  • Lin BY, Chang CD, Huang LLH, Liu YC, Su YY, Chen TC, Chang CC (2016) The mitochondrial DNA markers for distinguishing Phalaenopsis species and revealing maternal phylogeny. Biol Plant 60:68–78

    Article  CAS  Google Scholar 

  • Liu YC, Huang CH, Chang CC (2022) A transcriptomic analysis of tobacco leaf with the functional loss of the plastid rpoB operon caused by TALEN-mediated double-strand breakage. Plants 11(21):2860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I (2018) Can mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life 70(12):1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2022) Engineering the plastid and mitochondrial genomes of flowering plants. Nat Plants 8(9):996–1006

    Article  PubMed  CAS  Google Scholar 

  • Mi L, Shi M, Li YX, Xie G, Rao X, Wu D, Wang Y (2023) DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat Commun 14(1):874

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Liu DR (2020) A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583(7817):631–637

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok BY, Kotrys AV, Raguram A, Huang TP, Mootha VK, Liu DR (2022a) CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 40(9):1378–1387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok YG, Hong S, Bae SJ, Cho SI, Kim JS (2022b) Targeted A-to-G base editing of chloroplast DNA in plants. Nat Plants 8:1378–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok YG, Lee JM, Chung E, Lee J, Lim K, Cho SI, Kim JS (2022c) Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat Commun 13(1):4038

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Møller IM, Rasmusson AG, Van Aken O (2021) Plant mitochondria–past, present and future. Plant J 108(4):912–959

    Article  PubMed  Google Scholar 

  • Nakazato I, Okuno M, Yamamoto H, Tamura Y, Itoh T, Shikanai T, Takanashi H, Tsutsumi N, Arimura SI (2021) Targeted base editing in the plastid genome of Arabidopsis thaliana. Nat Plants 7:906–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakazato I, Okuno M, Zhou C, Itoh T, Tsutsumi N, Takenaka M, Arimura SI (2022) Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc Natl Acad Sci 119(20):e2121177119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakazato I, Okuno M, Itoh T, Tsutsumi N, Arimura SI (2023) Characterization and development of a plastid genome base editor, ptpTALECD. Plant J 115(4):1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Omukai S, Arimura SI, Toriyama K, Kazama T (2021) Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. Plant Physiol 187(1):236–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Börner T (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64(6):948–959

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Ocampo A, Suzuki K et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci 103(12):4771–4776

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruf S, Forner J, Hasse C, Kroop X, Seeger S, Schollbach L, Bock R (2019) High-efficiency generation of fertile transplastomic arabidopsis plants. Nat Plants 5(3):282–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto W, Takami T (2018) Chloroplast DNA dynamics: copy number, quality control and degradation. Plant Cell Physiol 59(6):1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Salinas T, Duchêne AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Maréchal-Drouard L (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci 103(48):18362–18367

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Takatsuka A, Kazama T, Arimura SI, Toriyama K (2022) TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J 110(4):994–1004

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Forner J, Karcher D, Bock R (2022) DNA base editing in nuclear and organellar genomes. Trends Genet 38(11):1147–69

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15(1):57–61

    Article  PubMed  CAS  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Wu H, Kang X et al (2018) Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 9:283–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi Z, Zhang X, Tang W, Yu Y, Wei X, Zhang X, Wei W (2023) Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01791-y

  • Yoo BC, Yadav NS, Orozco EM Jr, Sakai H (2020) Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 8:e8362

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Lutz KA, Maliga P (2017) Efficient plastid transformation in Arabidopsis. Plant Physiol 175(1):186–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Yu PC, Chang WJ, Yu K, Lin CS (2020) Plastid transformation: how does it work? Can it be applied to crops? What can it offer? Int J Mol Sci 21(14):4854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported in part by the grant (NSTC 112-2313-B-006-004) to C.-C. Chang from the National Science and Technology Council, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, YCL, JYL, YHT, MTC, and CCC; writing—original draft preparation, CCC; writing—review and editing, JYL, MTC, and CCC; visualization, JYL, YCL and CCC; supervision, MTC and CCC; funding acquisition, CCC. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Ming-Tsair Chan or Ching-Chun Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JY., Liu, YC., Tseng, YH. et al. TALE-based organellar genome editing and gene expression in plants. Plant Cell Rep 43, 61 (2024). https://doi.org/10.1007/s00299-024-03150-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03150-w

Keywords

Navigation