Skip to main content
Log in

Expression of alcohol acyltransferase is a potential determinant of fruit volatile ester variations in Capsicum

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The transcript level of alcohol acyltransferase 1 (AAT1) may be the main factor influencing the variations in volatile esters that characterizing the fruity/exotic aroma of pepper fruit.

Abstract

Volatile esters are key components for characterizing the fruity/exotic aroma of pepper (Capsicum spp.) fruit. In general, the volatile ester content in the fruit is the consequence of a delicate balance between their synthesis by alcohol acyltransferases (AATs) and degradation by carboxylesterases (CXEs). However, the precise role of these families of enzymes with regard to volatile ester content remains unexplored in Capsicum. In this study, we found that the volatile ester content was relatively low in C. annuum and much higher in C. chinense, particularly in pungent varieties. Additionally, fruits collected from multiple non-pungent C. chinense varieties, which harbor loss-of-function mutations in capsaicinoid biosynthetic genes, acyltransferase (Pun1), putative aminotransferase (pAMT), or putative ketoacyl-ACP reductase (CaKR1) were analyzed. The volatile ester contents of non-pungent C. chinense varieties (pamt/pamt) were equivalent to those of pungent varieties, but their levels were significantly lower in non-pungent NMCA30036 (pun12/pun12) and C. chinense (Cakr1/Cakr1) varieties. Multiple AAT-like sequences were identified from the pepper genome sequences, whereas only one CXE-like sequence was identified. Among these, AAT1, AAT2, and CXE1 were isolated from fruits of C. chinense and C. annuum. Gene expression analysis revealed that the AAT1 transcript level is a potential determinant of fruit volatile ester variations in Capsicum. Furthermore, enzymatic assays demonstrated that AAT1 is responsible for the biosynthesis of volatile esters in pepper fruit. Identification of a key gene for aroma biosynthesis in pepper fruit will provide a theoretical basis for the development of molecular tools for flavor improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharoni A, Keizer LCP, Bouwmeester HJ et al (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C 4:442–446

    Article  Google Scholar 

  • Bizzio LN, Tieman D, Munoz PR (2022) Branched-chain volatiles in fruit: a molecular perspective. Front Plant Sci 12:814138

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosland PW, Coon D (2015) ‘NuMex Trick-or-Treat’, a no-heat Habanero pepper. HortScience 50:1739–1740

    Article  Google Scholar 

  • Bosland PW, Votava EJ (2012) Taxonomy, pod types and genetic resources. In: Bosland PW, Votava EJ (eds) Peppers: vegetable and spice capsicums, 2nd edn. CABI publishing, Wallingford, p 14

    Chapter  Google Scholar 

  • Chambers AH, Pillet J, Plotto A, Bai J, Whitaker VM, Folta KM (2014) Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach. BMC Genom 15:217

    Article  Google Scholar 

  • Cumplido-Laso G, Medina-Puche L, Moyano E et al (2012) The fruit ripening- related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot 63:4275–4290

    Article  CAS  PubMed  Google Scholar 

  • Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, Velasco R, Costa F (2012) Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol Breed 29:609–625

    Article  CAS  Google Scholar 

  • Echeverria G, Graell J, Lopez ML, Lara I (2004) Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biol Technol 31:217–227

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggink PM, Tikunov Y, Maliepaard C et al (2014) Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theor Appl Genet 127:373–390

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Manríquez D, Flores FB et al (2005) Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity. Plant Mol Biol 59:345–362

    Article  CAS  PubMed  Google Scholar 

  • Galaz S, Morales-Quintana L, Moya-León MA, Herrera R (2013) Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS J 280:1344–1357

    Article  CAS  PubMed  Google Scholar 

  • Goulet C, Mageroy MH, Lam NB, Floystad A, Tieman DM, Klee HJ (2012) Role of an esterase in flavor volatile variation within the tomato clade. Proc Natl Acad Sci USA 109:19009–19014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulet C, Kamiyoshihara Y, Lam NB, Richard T, Taylor MG, Tieman DM, Klee HJ (2015) Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition. Mol Plant 8:153–162

    Article  CAS  PubMed  Google Scholar 

  • Heng Z, Xu X, Xu X et al (2023) Characterization of odor-contributing volatile in Capsicum chinense ‘JT-1’fruits during development and transcriptome analysis of key fruit-aroma formation periods. Sci Hortic 309:111691

    Article  CAS  Google Scholar 

  • Joshi D, Somkuwar BG, Kharkwal H, Chandra S (2022) Aroma based varieties of Capsicum chinense Jacq., geographical distribution and scope for expansion of the species. J Appl Res Med Aromat Plants 29:100379

    Google Scholar 

  • Kamiyoshihara Y, Miyajima S, Miyagawa Y, Moriyama K, Mizuno S, Goulet C, Klee H, Tateishi A (2020) Functional divergence of principal alcohol o-acyltransferase for biosynthesis of volatile acetate esters among tomato wild species (Solanum Sect. Lycopersicon). Plant Sci 300:110612

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobata K, Todo T, Yazawa S, Iwai K, Watabe T (1998) Novel capsaicinoid-like substances, capsiate and dihydrocapsiate, from the fruits of a nonpungent cultivar, CH-19 sweet, of pepper (Capsicum annuum L.). J Agric Food Chem 46:1695–1697

    Article  CAS  Google Scholar 

  • Koeda S, Hosokawa M, Saito H, Doi M (2013) Temperature-sensitive phenotype caused by natural mutation in Capsicum latescent in two tropical regions. J Plant Res 126:675–684

    Article  CAS  PubMed  Google Scholar 

  • Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a Caribbean island. J Japan Soc Hort Sci 83:244–251

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Saito H, Nagano AJ, Yasugi M, Kudoh H, Tanaka Y (2019) Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theor Appl Genet 132:65–80

    Article  CAS  PubMed  Google Scholar 

  • Koeda S, Nakano R, Sawaki T, Sato K, Tanaka Y, Kanzaki S (2020) Multiple non-pungent Capsicum chinense accessions with a loss of function CaKR1 allele originating from South America. Hort J 89:460–465

    Article  CAS  Google Scholar 

  • Koeda S, Onouchi M, Mori N, Pohan NS, Nagano AJ, Kesumawati E (2021) A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. Theor Appl Genet 134:2947–2964

    Article  CAS  PubMed  Google Scholar 

  • Koeda S, Mori N, Horiuchi R, Watanabe C, Nagano AJ, Shiragane H (2022) PepYLCIV and PepYLCAV resistance gene Pepy-2 encodes DFDGD-Class RNA-dependent RNA polymerase in Capsicum. Theor Appl Genet 135:2437–2452

    Article  CAS  PubMed  Google Scholar 

  • Kollmannsberger H, Rodriguez Burruezo A, Nitz S, Nuez F (2011) Volatile and capsaicinoid composition of aji (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. J Sci Food Agric 91:1598–1611

    Article  CAS  PubMed  Google Scholar 

  • Kraft KH, Brown CH, Nabhan GP et al (2014) Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc Natl Acad Sci USA 111:6165–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang Y, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yanzawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 sweet. Plant J 59:953–961

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xu Y, Xu G, Gu L, Li D, Shu H (2006) Molecular cloning and expression of a gene encoding alcohol acyltransferase (MdAAT2) from apple (cv. Golden Delicious). Phytochemistry 67:658–667

    Article  CAS  PubMed  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moses M, Umaharan P (2012) Genetic structure and phylogenetic relationships of Capsicum chinense. J Amer Soc Hort Sci 137:250–262

    Article  Google Scholar 

  • Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta T (2015) Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol 15:1–10

    Article  CAS  Google Scholar 

  • Oney-Montalvo JE, López-Salas D, Ramírez-Rivera E, Ramírez-Sucre MO, Rodríguez-Buenfil IM (2022) Evaluation of the soil type effect on the volatile compounds in the habanero pepper (Capsicum chinense Jacq.). Horticulturae 8:428

    Article  Google Scholar 

  • Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58:1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Yu CS, Shen YO et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Burruezo A, Kollmannsberger H, González-Mas MC, Nitz S, Fernando N (2010) HS-SPME Comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum-chinense-frutescens complex. J Agric Food Chem 58:4388–4400

    Article  PubMed  Google Scholar 

  • Seki T, Ota M, Hirano H, Nakagawa K (2020) Characterization of newly developed pepper cultivars (Capsicum chinense) ‘Dieta0011-0301’, ‘Dieta0011-0602’, ‘Dieta0041-0401’, and ‘Dieta0041-0601’ containing high capsinoid concentrations and a strong fruity aroma. Biosci Biotechnol Biochem 84:1870–1885

    Article  CAS  PubMed  Google Scholar 

  • Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144

    Article  CAS  PubMed  Google Scholar 

  • Souleyre EJF, Chagné D, Chen X et al (2014) The AAT1 locus is critical for the biosynthesis of esters contributing to ‘“ripe apple”’ flavour in ‘“Royal Gala”’ and ‘“Granny Smith”’ apples. Plant J 78:903–915

    Article  CAS  PubMed  Google Scholar 

  • Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  PubMed  Google Scholar 

  • Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn MM (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991

    Article  CAS  PubMed  Google Scholar 

  • Taiti C, Costa C, Migliori CA, Comparini D, Figorilli S, Mancuso S (2019) Correlation between volatile compounds and spiciness in domesticated and wild fresh chili peppers. Food Bioprocess Technol 12:1366–1380

    Article  CAS  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sonoyama T, Muraga Y, Koeda S, Goto T, Yoshida Y, Yasuba K (2015) Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense. Mol Breed 35:142

    Article  Google Scholar 

  • Tanaka Y, Fukuta S, Koeda S, Goto T, Yoshida Y, Yasuba K (2018) Identification of a novel mutant pAMT allele responsible for low-pungency and capsinoid production in chili pepper accession ‘No.4034’ (Capsicum chinense). Hort J 87:222–228

    Article  CAS  Google Scholar 

  • Tanaka Y, Asano T, Kanemitsu Y et al (2019) Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. Plant J 100:693–705

    Article  CAS  PubMed  Google Scholar 

  • Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    Article  CAS  PubMed  Google Scholar 

  • Wahyuni Y, Ballester AR, Tikunov Y et al (2013) Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–144

    Article  CAS  PubMed  Google Scholar 

  • Wyllie SG, Fellman JK (2000) Formation of volatile branched chain esters in bananas (Musa sapientum L.). J Agric Food Chem 48:3493–3496

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Sun B, Cai W et al (2019) Natural variations in the MYB transcription factor MYB31 determine the evolution of extremely pungent peppers. New Phytol 223:922–938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Paul Bosland (New Mexico State University) for providing NMCA30036, Caribbean Agricultural Research and Development Institute (CARDI) for providing C. chinense varieties (Faria, Moruga Red, Joyce, Phyllis, and West Indies Red), Dr. Norio Yamamoto (National Museum of Ethnology) for providing CaKR1 mutants (No.3327, No.3341, No.4026, and No.4028), and the National Agriculture and Food Research Organization (NARO) Genebank for providing C. annuum varieties. We thank Shinya Kanzaki (Kindai University) for useful discussion. We thank Jennifer Smith, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. We thank the anonymous reviewers for the constructive comments and suggestion which helped us to improve the manuscript.

Funding

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 25850018, 16K07605, 18H03446, 22H03827 and Kindai University Faculty of Agriculture Fund for Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

SK conceived the idea of the study. SK and TN designed experiments, interpreted the results, and wrote the manuscript. TN, SH, AK, Yasuto T, HY, SO, MK, and KO analyzed volatile compounds by GC. KT analyzed volatile compounds by GC–MS. Yoshiyuki T analyzed capsaicinoid. TN isolated and analyzed the gene expression of AAT and CXE genes. YK analyzed the function of the recombinant AAT protein. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sota Koeda.

Ethics declarations

Conflict of interest

We declare that no conflicting interests deserved.

Additional information

Communicated by Ralf Welsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1320 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeda, S., Noda, T., Hachisu, S. et al. Expression of alcohol acyltransferase is a potential determinant of fruit volatile ester variations in Capsicum. Plant Cell Rep 42, 1745–1756 (2023). https://doi.org/10.1007/s00299-023-03064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03064-z

Keywords

Navigation