Skip to main content

Advertisement

Log in

Integration of light and ABA signaling pathways to combat drought stress in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Drought is one of the most critical stresses, which causes an enormous reduction in crop yield. Plants develop various strategies like drought escape, drought avoidance, and drought tolerance to cope with the reduced availability of water during drought. Plants adopt several morphological and biochemical modifications to fine-tune their water-use efficiency to alleviate drought stress. ABA accumulation and signaling plays a crucial role in the response of plants towards drought. Here, we discuss how drought-induced ABA regulates the modifications in stomatal dynamics, root system architecture, and the timing of senescence to counter drought stress. These physiological responses are also regulated by light, indicating the possibility of convergence of light- and drought-induced ABA signaling pathways. In this review, we provide an overview of investigations reporting light–ABA signaling cross talk in Arabidopsis as well as other crop species. We have also tried to describe the potential role of different light components and their respective photoreceptors and downstream factors like HY5, PIFs, BBXs, and COP1 in modulating drought stress responses. Finally, we highlight the possibilities of enhancing the plant drought resilience by fine-tuning light environment or its signaling components in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No new data sets were generated or analyzed in this study.

References

  • Allen J, Guo K, Zhang D, Ince M, Jammes F (2019) ABA-glucose ester hydrolyzing enzyme ATBG1 and PHYB antagonistically regulate stomatal development. PLoS One 14:e0218605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amissah L, Mohren GM, Kyereh B, Poorter L (2015) The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS One 10:e0121004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ando E, Kinoshita T (2018) Red light-induced phosphorylation of plasma membrane H(+)-ATPase in stomatal guard cells. Plant Physiol 178:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Kim WY, Cha JY, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, Lee SY, Pardo JM, Kim MC, Yun DJ (2020) The GIGANTEA-ENHANCED EM LEVEL complex enhances drought tolerance via regulation of abscisic acid synthesis. Plant Physiol 184:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2012) Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol 158:1475–1484

    Article  CAS  PubMed  Google Scholar 

  • Casson SA, Hetherington AM (2014) Phytochrome B is required for light-mediated systemic control of stomatal development. Curr Biol 24:1216–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62:25–54

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lee J, Lee J-M, Han M, Emonet A, Lee J, Jia X, Lee Y (2022) MSD2, an apoplastic Mn-SOD, contributes to root skotomorphogenic growth by modulating ROS distribution in Arabidopsis. Plant Sci 317:111192

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Kiss JZ (2005) The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 46:317–323

    Article  CAS  PubMed  Google Scholar 

  • Cotelle V, Leonhardt N (2015) 14-3-3 Proteins in guard cell signaling. Front Plant Sci 6:1210

    PubMed  Google Scholar 

  • Courbier S, Pierik R (2019) Canopy light quality modulates stress responses in plants. iScience 22:441–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate—stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, Rubio V, Holm M (2008) LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou L, He K, Peng J, Wang X, Mao T (2021) The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat Commun 12:2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Huang F, Wu N, Li X, Hu H, Xiong L (2018) Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol Plant 11:584–597

    Article  CAS  PubMed  Google Scholar 

  • Galen C, Rabenold JJ, Liscum E (2007) Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol 173:91–99

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wu M, Zhang M, Jiang W, Liang E, Zhang D, Zhang C, Xiao N, Chen J (2018a) Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol 97:311–323

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wu M, Zhang M, Jiang W, Ren X, Liang E, Zhang D, Zhang C, Xiao N, Li Y, Dai Y, Chen J (2018b) A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa. Plant Biotechnol J 16:1375–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavassi MA, Monteiro CC, Campos ML, Melo HC, Carvalho RF (2017) Phytochromes are key regulators of abiotic stress responses in tomato. Sci Hortic 222:126–135

    Article  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106:21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez CV, Ibarra SE, Piccoli PN, Botto JF, Boccalandro HE (2012) Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ 35:1958–1968

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • Ha JH, Kim JH, Kim SG, Sim HJ, Lee G, Halitschke R, Baldwin IT, Kim JI, Park CM (2018) Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J 94:790–798

    Article  CAS  PubMed  Google Scholar 

  • Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12:489–505

    Article  CAS  PubMed  Google Scholar 

  • Inoue SI, Kinoshita T (2017) Blue light regulation of stomatal opening and the plasma membrane H(+)-ATPase. Plant Physiol 174:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezek M, Blatt MR (2017) The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiol 174:487–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Y, Lin R (2020) Transcriptional regulatory network of the light signaling pathways. New Phytol 227:683–697

    Article  CAS  PubMed  Google Scholar 

  • Jurca M, Sjölander J, Ibáñez C, Matrosova A, Johansson M, Kozarewa I, Takata N, Bakó L, Webb AAR, Israelsson-Nordström M, Eriksson ME (2022) ZEITLUPE promotes ABA-induced stomatal closure in Arabidopsis and populus. Front Plant Sci 13:

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Iizumi T, Nishimori M (2019) Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol 58:1233–1244

    Article  Google Scholar 

  • Klein SP, Schneider HM, Perkins AC, Brown KM, Lynch JP (2020) Multiple integrated root phenotypes are associated with improved drought tolerance. Plant Physiol 183:1011–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Lahav M, Abu-Abied M, Belausov E, Schwartz A, Sadot E (2004) Microtubules of guard cells are light sensitive. Plant Cell Physiol 45:573–582

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Bergmann DC (2012) Stomatal development: a plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 139:3683–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:ra106

    Article  PubMed  Google Scholar 

  • Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM (2017) Multiple routes of light signaling during root photomorphogenesis. Trends Plant Sci 22:803–812

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kang MH, Kim JY, Lim PO (2021) The role of light and circadian clock in regulation of leaf senescence. Front Plant Sci 12:669170

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Park YJ, Kim JY, Park CM (2022) Phytochrome B conveys low ambient temperature cues to the ethylene-mediated leaf senescence in Arabidopsis. Plant Cell Physiol 63:326–339

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Salt and ion stresses. Responses Plants Environ Stress 2:365–434

    Google Scholar 

  • Li YZ, Zhao ZQ, Song DD, Yuan YX, Sun HJ, Zhao JF, Chen YL, Zhang CG (2021) SnRK2.6 interacts with phytochrome B and plays a negative role in red light-induced stomatal opening. Plant Signal Behav 16:1913307

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebsch D, Keech O (2016) Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol 212:563–570

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Park JH, Jung S, Hwang D, Nam HG, Hong S (2018) Antagonistic roles of PhyA and PhyB in far-red light-dependent leaf senescence in Arabidopsis thaliana. Plant Cell Physiol 59:1753–1764

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li R, Dai Y, Yuan L, Sun Q, Zhang S, Wang X (2019a) A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Mol Biol 99:437–447

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J, Zhang F (2019b) The heterologous expression of CmBBX22 delays leaf senescence and improves drought tolerance in Arabidopsis. Plant Cell Rep 38:15–24

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2018) Rightsizing root phenotypes for drought resistance. J Exp Bot 69:3279–3292

    Article  CAS  PubMed  Google Scholar 

  • MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445:537–540

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211:1209–1220

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao R, Yuan W, Wang Y, Garcia-Maquilon I, Dang X, Li Y, Zhang J, Zhu Y, Rodriguez PL, Xu W (2021) Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H(+)-ATPase 2. Sci Adv 7:eabd4113

  • Moazzam-Jazi M, Ghasemi S, Seyedi SM, Niknam V (2018) COP1 plays a prominent role in drought stress tolerance in Arabidopsis and pea. Plant Physiol Biochem 130:678–691

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki T, Miyazawa Y, Fujii N, Takahashi H (2012) Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol 28:154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami N, Fuji S, Yamauchi S, Hosotani S, Ji M, Takemiya A (2022) Reactive carbonyl species inhibit blue-light-dependent activation of the plasma membrane H+-ATPase and stomatal opening. Plant Cell Physiol 63:1168–1176

    Article  CAS  PubMed  Google Scholar 

  • Oh JE, Kwon Y, Kim JH, Noh H, Hong SW, Lee H (2011) A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol 77:91–103

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363:1456–1459

    Article  CAS  PubMed  Google Scholar 

  • Pei D, Hua D, Deng J, Wang Z, Song C, Wang Y, Wang Y, Qi J, Kollist H, Yang S, Guo Y, Gong Z (2022) Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 34:2708–2729

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007) Termination of asymmetric cell division and differentiation of stomata. Nature 445:501–505

    Article  CAS  PubMed  Google Scholar 

  • Qiu J-R, Xiang X-Y, Wang J-T, Xu W-X, Chen J, Xiao Y, Jiang C-Z, Huang Z (2020) MfPIF1 of resurrection plant Myrothamnus flabellifolia plays a positive regulatory role in responding to drought and salinity stresses in Arabidopsis. Int J Mol Sci 21:3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Gil Nam H, Lim PO, Mueller-Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate.’ New Phytol 167:665–691

    Article  CAS  PubMed  Google Scholar 

  • Rosales MA, Maurel C, Nacry P (2019) Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiol 180:2198–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Jeong J, Kang MY, Kim J, Paek NC, Choi G (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun 5:4636

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet 2:e202

    Article  PubMed  PubMed Central  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Nose T, Jikumaru Y, Kamiya Y (2013) ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J 74:448–457

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc Natl Acad Sci USA 109:15947–15952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valim HF, McGale E, Yon F, Halitschke R, Fragoso V, Schuman MC, Baldwin IT (2019) The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought. Plant Physiol 181:305–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Pierik R (2018a) Far-red light detection in the shoot regulates lateral root development through the hy5 transcription factor. Plant Cell 30:101–116

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gelderen K, Kang C, Pierik R (2018b) Light signaling, root development, and plasticity. Plant Physiol 176:1049–1060

    Article  PubMed  Google Scholar 

  • Wang FF, Lian HL, Kang CY, Yang HQ (2010) Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant 3:246–259

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhou Z, Rahiman R, Lee GSY, Yeo YK, Yang X, Lau OS (2021) Light regulates stomatal development by modulating paracrine signaling from inner tissues. Nat Commun 12:3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XR, Wang YH, Jia M, Zhang RR, Liu H, Xu ZS, Xiong AS (2022) The phytochrome-interacting factor DcPIF3 of carrot plays a positive role in drought stress by increasing endogenous ABA level in Arabidopsis. Plant Sci 322:111367

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B (2020) A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J 103:1783–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadukrishnan P, Datta S (2021) Light and abscisic acid interplay in early seedling development. New Phytol 229:763–769

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J (2014) A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 26:2038–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Wen Q, Yu R, Han X, Deng XW, Chen H (2020) Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. Proc Natl Acad Sci USA 117:18840–18848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Gavya SL, Zhou Z, Urano D, Lau OS (2022) Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS. Sci Adv 8:eadd2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH (2017) OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies. Front Plant Sci 8:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT (2014) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ 37:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Guo P, Xia X, Guo H, Li Z (2021) Multiple layers of regulation on leaf senescence: new advances and perspectives. Front Plant Sci 12:788996

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge all the lab members for their constructive comments and IISER Bhopal for infrastructure and facilities. All the figures are created with Biorender.com (https://app.biorender.com/illustrations) The authors sincerely apologize for omission of any reference which might have been excluded owing to lack of space.

Funding

AM and SD acknowledge CSIR, Govt. of India for their fellowship. SD would like to thank. MHRD-STARS grant (STARS/APR2019/S/245/FS), Govt. of India for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Datta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Dwivedi, S., Bhagavatula, L. et al. Integration of light and ABA signaling pathways to combat drought stress in plants. Plant Cell Rep 42, 829–841 (2023). https://doi.org/10.1007/s00299-023-02999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-02999-7

Keywords

Navigation