Skip to main content
Log in

The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis.

Abstract

Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

REL:

Relative electrical leakage

qRT-PCR:

Quantitative real-time polymerase chain reaction

LUC:

Luciferase

CAT:

Catalase

TCP:

TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR

FPKM:

Fragments per kilobase of exon model per Million mapped fragments

RNA-seq:

RNA sequencing

FW:

Fresh weight

SOS:

Salt overly sensitive

Y1H:

Yeast one-hybrid

ABA:

Abscisic acid

References

  • Aguilar-Martínez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Gregorio GB, Oliveira MM, Saibo NJ (2017) Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Mol Biol 93:61–77

    Article  CAS  PubMed  Google Scholar 

  • Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P (2021) Ion homeostasis for salinity tolerance in plants: a molecular approach. Physiol Plant 171:578–594

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berriri S, Garcia AV, dit Frey NF, Rozhon W, Pateyron S, Leonhardt N, Montillet JL, Leung J, Hirt H, Colcombet J (2012) Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudsocq M, Laurière C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressan HRA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol. https://doi.org/10.5402/2012/927436

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B (2017) The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai W, Jiang P, Huang G, Jiang H, Li X (2017) Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. Physiol Mol Biol Plants 23:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challa KR, Aggarwal P, Nath U (2016) Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis. Plant Cell 28:2117–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Wang Y, Xiong R, Gao Y, Yan H, Xiang Y (2020) A moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants. Planta 251:99

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC, Angenent GC, Immink RG (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protoc. https://doi.org/10.21769/BioProtoc.263

    Article  PubMed  Google Scholar 

  • Davière JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24:1923–1928

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Cai Z, Du H, Wang H (2019) Genome-wide analysis of TCP family genes in Zea mays L. Identified a role for ZmTCP42 in drought tolerance. Int J Mol Sci. https://doi.org/10.3390/ijms20112762

    Article  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng XW (2005) Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17:1180–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlayson SA (2007) Arabidopsis teosinte branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot teosinte branched1. Plant Cell Physiol 48:667–677

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    Article  CAS  PubMed  Google Scholar 

  • Fu HH, Luan S (1998) AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LW, Yang SL, Wei SW, Huang DF, Zhang YD (2020) Supportive role of the Na+ transporter CmHKT1;1 from Cucumis melo in transgenic Arabidopsis salt tolerance through improved K+/Na+ balance. Plant Mol Biol 103:561–580

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu H, Zhang K, Li F, Wu M, Xiang Y (2021) A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice. Plant Cell Rep 40:187–204

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM (2017) Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA 114:2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566

    Article  PubMed  CAS  Google Scholar 

  • Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou D, Cheng Z, Xie L, Li X, Li J, Mu S, Gao J (2018) The R2R3MYB gene family in Phyllostachys edulis: genome-wide analysis and identification of stress or development-related R2R3MYBs. Front Plant Sci 9:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, Zhuo J, Zeng W, Wu A, Lin X (2020) PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiol 40:1792–1806

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C (2015) SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot 66:4683–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiu S, Xu Y, Wang J, Wang L, Wang S, Ma C, Guan L, Abdullah M, Zhao M, Xu W, Ma W, Zhang C (2019) Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera. Front Genet 10:1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M (2021) KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 49:D545-d551

    Article  CAS  PubMed  Google Scholar 

  • Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J 68:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020) Regulation of a cytochrome P450 Gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184:2199–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y, Hou C, Li X, Gao J (2017) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lian C, Li Q, Yao K, Zhang Y, Meng S, Yin W, Xia X (2018) Populus trichocarpa PtNF-YA9, a multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in Arabidopsis. Front Plant Sci 9:954

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y (2018) TCP Transcription Factors in Moso Bamboo (Phyllostachys edulis): genome-wide identification and expression analysis. Front Plant Sci 9:1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Gao Y, Wu M, Shi Y, Xiang Y (2020a) TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104002

    Article  Google Scholar 

  • Liu S, Yang R, Liu M, Zhang S, Yan K, Yang G, Huang J, Zheng C, Wu C (2020b) PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes. J Exp Bot 71:5589–5602

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  CAS  PubMed  Google Scholar 

  • Lykkesfeldt J (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380:50–58

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ma J, Fan D, Li C, Jiang Y, Luo K (2016) Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Sci Rep 6:32795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandadi KK, Misra A, Ren S, McKnight TD (2009) BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol 150:1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39

    Article  PubMed  CAS  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Tyagi AK (2015) OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 5:9998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Pan F, Wu M, Hu W, Liu R, Yan H, Xiang Y (2019) Genome-wide identification and expression analyses of the bZIP transcription factor genes in moso bamboo (Phyllostachys edulis). Int J Mol Sci. https://doi.org/10.3390/ijms20092203

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal SK, Kim BG, Lee SC, Cheong YH, Kudla J, Luan S (2015) Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 169:780–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Mandadi KK, Boedeker AL, Rathore KS, McKnight TD (2007) Regulation of telomerase in Arabidopsis by BT2, an apparent target of telomerase activator1. Plant Cell 19:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Zhou CM, Confraria A, Martinho C, von Born P, Baena-Gonzalez E, Wang JW, Weigel D (2014) Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Curr Biol 24:2714–2719

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Yang K, Xu X, Zhu C, Gao Z (2019) Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in moso bamboo. Biomolecules. https://doi.org/10.3390/biom9100609

    Article  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (2010) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  Google Scholar 

  • Song C, Chung WS, Lim CO (2016) Overexpression of heat shock factor gene HsfA3 increases galactinol levels and oxidative stress tolerance in Arabidopsis. Mol Cells 39:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. The Plant J 33:513–520

    Article  CAS  PubMed  Google Scholar 

  • Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH (2012) The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J Exp Bot 63:809–823

    Article  CAS  PubMed  Google Scholar 

  • Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J (2014) Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 21:1422–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS ONE. https://doi.org/10.1371/journal.pone.0091357

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Wu M, Liu H, Gao Y, Chen F, Xiang Y (2021) Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. Plant Physiol Biochem 164:205–221

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Ma H, Wang J, Zhang D (2010) Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J Integr Plant Biol 49:885–897

    Article  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang R, Yang X, Ju Q, Li W, Lü S, Tran LP, Xu J (2020) The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ 43:1925–1943

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B (2014) A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol 55:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, Chen C, Shi C, Liu X, Zhang H, Lou Y, Chen L, Sun H, Zhou X, Wang S, Zhang C, Xu H, Li L, Yang Y, Wei Y, Yang W, Gao Q, Yang H, Zhao S, Jiang Z (2018a) Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7:1–12

    PubMed  Google Scholar 

  • Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A (2018b) Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of Wheat (Triticum aestivum L.). Front PlaNt Sci. https://doi.org/10.3389/fpls.2018.01282

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang D, An J, Yin H, Fang S, Chu J, Zhao Y, Li J (2018) TCP transcription factors regulate shade avoidance via directly mediating the expression of both phytochrome interacting factors and auxin biosynthetic genes. Plant Physiol 176:1850–1861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31670672) and the 2021 Graduate Innovation Fund of Anhui Agricultural University (Grant No. 2021yjs-12).

Author information

Authors and Affiliations

Authors

Contributions

Experiments in this study were designed by XY, XYZ, and LHL. XYZ and LHL performed experiments. GYM and XR performed experimental guidance. WM and ZKM performed data analysis. XYZ drafted the manuscript, LHL provided advice on the manuscript. All authors edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Xiang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Communicated by Ying-Tang Lu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 109 KB) FPKM values of eight selected stress-responsive genes.

Supplementary file2 (TIF 150 KB) Relative expression of eight selected stress-responsive genes using qRT-PCR method.

299_2021_2765_MOESM3_ESM.tif

Supplementary file3 (TIF 54 KB) Sketch map of BT2 upstream promoter regions (a) and expression levels of BT2 after salt stress treatment (b) (RNA-seq data, values of FPKM).

Supplementary file4 (XLSX 11 KB) Primers used in this study.

299_2021_2765_MOESM5_ESM.xlsx

Supplementary file5 (XLSX 12 KB) Identification of stress (salt, H2O2 and osmotic stress) responsive DEGs under 200 mM NaCl condition in PeTCP10 OE lines versus WT using RNA-seq method.

Supplementary file6 (XLSX 9 KB) Putative binding sites of Class I TCP in salt stress-responsive DEGs promoter regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, H., Gao, Y. et al. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. Plant Cell Rep 40, 1971–1987 (2021). https://doi.org/10.1007/s00299-021-02765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02765-7

Keywords

Navigation