Skip to main content
Log in

Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This study identified stable reference genes for normalization of gene expression data in qRT-PCR analysis of leaf and root tissues in creeping bentgrass under four abiotic stresses.

Abstract

Examination of gene expression using quantitative real-time PCR (qRT-PCR) in plant responses to abiotic stresses can provide valuable information for stress-tolerance improvement. Selecting stable reference genes for qRT-PCR analysis is critically important. The objective of this study was to determine the stability of expression for eight candidate reference genes (ACT, EF1a, TUB, UPL7, GAPDH, PP2A, PEPKR1, and CACS) in two tissues (roots and leaves) of a perennial grass species under four abiotic stresses (salt, drought, cold, and heat) using four programs (GeNorm, NormFinder, BestKeeper, and RefFinder). The results showed that (1) the combinations of CACS and UPL7 or PP2A and ACT were stably expressed in salt-treated roots or leaves; (2) the combinations of GAPDH and CACS or PP2A and PEPKR1 were stable in roots and leaves under drought stress; (3) CACS and PP2A exhibited stable expression in cold-treated roots and the combination of EF1a and UPL7 was also stable in cold-treated leaves; and (4) CACS and PP2A were the two most stable reference genes in heat-stressed roots and UPL7 combined with GAPDH and PP2A was stably expressed in heat-stressed leaves. The qRT-PCR analysis of a target gene, AsSAP expression patterns in response to salinity and drought stress, confirmed the reliability of those selected and stable reference genes. Identification of stable reference genes in creeping bentgrass will improve assay accuracy for selecting stress-tolerance genes and identifying molecular mechanisms conferring stress tolerance in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tan Z, Hu B, Yang Z, Xu B, Zhuang L, Huang B (2014) Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses. Physiol Plant. doi:10.1111/ppl.12302

    Google Scholar 

  • Chi XY, Hu RB, Yang QL, Zhang XW, Pan LJ, Chen N, Chen MN, Yang Z, Wang T, He YA, Yu SL (2012) Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics 287:167–176

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Ketelaere A, Goossens K, Peelman L, Burvenich C (2006) Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. J Dairy Sci 89:4066–4069

    Article  PubMed  Google Scholar 

  • Demidenko NV, Logacheva MD, Penin AA (2011) Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 6:e19434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fry J, Huang B (2004) Applied turfgrass science and physiology. Chapter 2. Turfgrasses. Part II. Environmental Stresses and Pests. Wiley and Sons, Inc., Hoboken

  • Gimeno J, Eattock N, Van Deynze A, Blumwald E (2014) Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PLoS One 9:e91474

    Article  PubMed Central  PubMed  Google Scholar 

  • Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK (2013) SAPs as novel regulators of abiotic stress response in plants. BioEssays : news and reviews in molecular, cellular and developmental biology 35:639–648

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Huang L, Yan H, Jiang X, Yin G, Zhang X, Qi X, Zhang Y, Yan Y, Ma X, Peng Y (2014) Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS One 9:e93724

    Article  PubMed Central  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophy Res Co 345:646–651

    Article  CAS  Google Scholar 

  • Kundu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Fan CM, Zhang XM, Fu YF (2012) Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Rep 31:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Li W, Qian YQ, Han L, Liu JX, Sun ZY (2014) Identification of suitable reference genes in buffalo grass for accurate transcript normalization under various abiotic stress conditions. Gene 547:55–62

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Han X, Chen Y, Wu Q, Wang Y (2013) Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba. Mol Genet Genomics 288:727–737

    Article  CAS  PubMed  Google Scholar 

  • Lovdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242

    Article  CAS  PubMed  Google Scholar 

  • Ma SH, Niu HW, Liu CJ, Zhang J, Hou CY, Wang DM (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS One 8:e75271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One 7:e31263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS One 7:e35113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Lambers H, Huang B (2008) Short-term and long-term root respiratory acclimation to elevated temperatures associated with root thermotolerance for two Agrostis grass species. J Exp Bot 59:3803–3809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl Acids Res 37:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silveira ED, Alves-Ferreira M, Guimaraes LA, da Silva FR, Carneiro VT (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9:84

    Article  PubMed Central  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Tian J, Belanger FC, Huang B (2009) Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization. J Plant Physiol 166:588–601

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

  • Wang K, Zhang X, Ervin E (2012) Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin. J Plant Physiol 169:492–500

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Chen J, Tian Q, Wang S, Xia X, Yin W (2014a) Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR. Physiol Plant 152:529–545

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen Y, Fang H, Shi H, Chen K, Zhang Z, Tan X (2014b) Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol Genet Genomics 289:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Huang B (2010) a) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 167:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29:595–615

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Yin J, Li G, Qi L, Yang F, Wang R (2014) Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Mol Biol Rep 41:2325–2334

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 7:e44405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang L, Li W, Han S, Yang W, Qi L (2013) Reference Gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS One 8:e53196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (2014M551612) and Jiangsu Postdoctoral Science Foundation (1302018B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimin Yang or Bingru Huang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Communicated by Z.-Y. Wang.

Y. Chen and B. Hu contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1830_MOESM1_ESM.tif

Fig S1 Primer specificity and amplicon size. Agarose gel (1.8 %) electrophoresis indicates amplification of a single PCR product of the expected size for 9 genes (Number 1-9: ACT, EF1α, TUB, PP2A, UPL7, GAPDH, PEPKR1, CACS, and AsSAP). Melting curves of 9 genes show single peaks. M represents 100 bp DNA marker. (TIFF 3658 kb)

299_2015_1830_MOESM2_ESM.tif

Fig S2 Pairwise variation (V) of the candidate reference genes calculated by GeNorm. Vn/Vn+1 values were used for decision of the optimal number of reference genes. (TIFF 268 kb)

Table S1 Amplification Efficiency of qRT-PCR of eight reference genes and a target gene. (DOC 36 kb)

Table S2 Stability analysis of reference genes assayed by NormFinder software. (DOCX 19 kb)

Table S3 Stability analysis of reference genes assayed by BestKeeper software. (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hu, B., Tan, Z. et al. Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses. Plant Cell Rep 34, 1825–1834 (2015). https://doi.org/10.1007/s00299-015-1830-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1830-9

Keywords

Navigation