Skip to main content
Log in

The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The Arabidopsis receptor-like cytoplasmic kinase AtRLCK VI_A3 is activated by AtROPs and is involved in trichome branching and pathogen interaction.

Abstract

Receptor-like cytoplasmic kinases (RLCKs) belong to the large superfamily of receptor-like kinases, which are involved in a variety of cellular processes like plant growth, development and immune responses. Recent studies suggest that RLCKs of the VI_A subfamily are possible downstream effectors of the small monomeric G proteins of the plant-specific Rho family, called ‘Rho of plants’ (RAC/ROPs). Here, we describe Arabidopsis thaliana AtRLCK VI_A3 as a molecular interactor of AtROPs. In Arabidopsis epidermal cells, transient co-expression of plasma membrane located constitutively activated (CA) AtROP4 or CA AtROP6 resulting in the recruitment of green fluorescent protein-tagged AtRLCK VI_A3 to the cell periphery. Intrinsic kinase activity of AtRLCK VI_A3 was enhanced in the presence of CA AtROP6 in vitro and further suggested a functional interaction between the proteins. In the interaction of the biotrophic powdery mildew fungus Erysiphe cruciferarum (E. cruciferarum) and its host plant Arabidopsis, Atrlck VI_A3 mutant lines supported enhanced fungal reproduction. Furthermore Atrlck VI_A3 mutant lines showed slightly reduced size and an increase in trichome branch number compared to wild-type plants. In summary, our data suggest a role of the AtROP-regulated AtRLCK VI_A3 in basal resistance to E. cruciferarum as well as in plant growth and cellular differentiation during trichome morphogenesis. Results are discussed in the context of literature suggesting a function of RAC/ROPs in both resistance and susceptibility to pathogen infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517

    Article  CAS  PubMed  Google Scholar 

  • Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488

    Article  CAS  PubMed  Google Scholar 

  • Berken A (2006) ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459

    Article  CAS  PubMed  Google Scholar 

  • Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol 156:1837–1850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K (2010) Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol 51:585–595

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Ötvös K, Klement É, Bíró J, Fehér A (2009) Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett 583:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204:815–822

    Article  PubMed  Google Scholar 

  • Engelsdorf T, Horst RJ, Pröls R, Pröschel M, Dietz F, Hückelhoven R, Voll LM (2013) Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant Physiol 162:225–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  PubMed  Google Scholar 

  • Fraaije BA, Lovell DJ, Rohel EA, Hollomon DW (1999) Rapid detection and diagnosis of Septoria tritici epidemics in wheat using a polymerase chain reaction/PicoGreen assay. J Appl Microbiol 86:701–708

    Article  CAS  Google Scholar 

  • Fu Y, Li H, Yang ZB (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    Article  CAS  PubMed  Google Scholar 

  • Hoefle C, Hückelhoven R (2008) Enemy at the gates—traffic at the plant cell pathogen interface. Cell Microbiol 10:2400–2407

    Article  CAS  PubMed  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Hückelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huesmann C, Hoefle C, Hückelhoven R (2011) ROPGAPs of Arabidopsis limit susceptibility to powdery mildew. Plant Signal Behav 6:1691–1694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Hückelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hülskamp M, Miséra S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–566

    Article  PubMed  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    Article  CAS  PubMed  Google Scholar 

  • Joseph RE, Andreotti AH (2008) Bacterial expression and purification of interleukin-2 tyrosine kinase: single step separation of the chaperonin impurity. Protein Expr Purif 60:194–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jurca ME, Bottka S, Fehér A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27:739–748

    Article  CAS  PubMed  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin W, Ma X, Shan L, He P (2013) Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. J Integr Plant Biol 55:1188–1197

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci USA 107:496–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathur J (2006) Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisions. Can J Bot 84:604–612

    Article  CAS  Google Scholar 

  • Mathur J, Chua NH (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12:465–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick T-R, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53:909–923

    Article  CAS  PubMed  Google Scholar 

  • Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R (2008) Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep 27:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Pathuri IP, Imani J, Babaeizad V, Kogel KH, Eichmann R, Hückelhoven R (2009) Ectopic expression of barley constitutively activated ROPs supports susceptibility to powdery mildew and bacterial wildfire in tobacco. Eur J Plant Pathol 125:317–327

    Article  Google Scholar 

  • Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S (2013) The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol 161:1172–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambade A, Findlay K, Schäffner AR, Lloyd CW, Buschmann H (2014) Actin-dependent and -independent functions of cortical microtubules in the differentiation of Arabidopsis leaf trichomes. Plant Cell 26:1629–1644

    Article  CAS  PubMed  Google Scholar 

  • Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584

    Article  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36(5):589–601

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Abderhalden O, Dudler R (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant Microbe Interact 12:647–654

    Article  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh MK, Ren F, Giesemann T, Bosco CD, Pasternak TP, Blein T, Ruperti B, Schmidt G, Aktories K, Molendijk AJ, Palme K (2013) Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. Plant J 73:314–324

  • Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Hayun LB, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J 74:905–919

    Article  CAS  PubMed  Google Scholar 

  • Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112

    Article  CAS  PubMed  Google Scholar 

  • Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weis C, Hückelhoven R, Eichmann R (2013) LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64:3855–3867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Research Foundation (HU886/3 and SFB924 to R.H.) and the Hungarian Scientific Research Fund (OTKA K101112). The authors gratefully acknowledge the support by the Faculty Graduate Center Weihenstephan of TUM Graduate School at Technische Universität München, Germany.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Hückelhoven.

Additional information

Communicated by Amit Dhingra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiner, T., Hoefle, C., Huesmann, C. et al. The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Rep 34, 457–468 (2015). https://doi.org/10.1007/s00299-014-1725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1725-1

Keywords

Navigation