Skip to main content

Advertisement

Log in

Emerging epigenetic targets in rheumatoid arthritis

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis is a complex disorder that is characterized by irreversible and progressive destructions of joints, but its exact etiology remains mainly unknown. The occurrence and the progression of the disease entirely depend on environmental and genetic factors. In recent years, various epigenetic changes involving DNA methylation, histone modification, miRNA, X-chromosome inactivation, bromodomain, sirtuin, and many others were identified that were found to be linked to the activation and the aggressive phenotype in rheumatoid arthritis. Epigenetics is found to be one of the root causes, which brings changes in the heritable phenotype and is not determined by changes in the DNA sequences and understanding these epigenetic mechanisms and the pathogenesis of the disease can help in understanding the disease and various other possible ways for its control and/or prevention. The various epigenetic modification occurring are reversible and can be modulated by drugs, diet, and environmental factors. This article focuses on various epigenetic factors involved in the pathogenesis of rheumatoid arthritis. Further, various epigenetic therapies that might be successful in inhibiting these epigenetic modifications are summarized. Several therapeutic agents alter the epigenetic modifications occurring in various diseases and many of the epigenetic therapies are under pre-clinical and clinical trial. However, exploring these epigenetic prognostic biomarkers would give a broader perspective and provide more ideas and knowledge regarding the process and pathways through which the diseases occur, and also combining various therapeutic agents would show more beneficial and synergistic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

Not Applicable (Review Article).

Code availability (software application or custom code)

Not Applicable.

Abbreviations

AICDA:

Activation-induced cytidine deaminase

BETi:

Bromodomain and extra-terminal

CXCL12:

CXC motif chemokine ligand 12

DNMT:

DNA methyltransferase

FLS:

Fibroblast-like synoviocytes

Foxp3:

Forkhead box p3

HDAC:

Histone deacetylase

IFNg:

Interferon gamma

IL:

Interleukin

IRAK1:

Interleukin q receptor-associated kinase 1

IκBs:

Inhibitors of kappa B

KDM6B:

Lysine (K)-specific demethylase 6B

miR:

Mirco RNA

NFκB:

Nuclear factor-kappa B

OASF:

Osteoarthritis synovial fibroblast

PBMC:

Peripheral blood mononuclear cells

PI3K:

Phosphoinositide 3-kinase pathway

RA:

Rheumatoid arthritis

RASF:

Rheumatoid arthritis synovial fibroblast

SF:

Synovial fibroblast

SF:

Synovial fibroblast

TF:

Transcription factors

TGFb:

Transforming growth factor beta

TLR2:

Toll like receptor 2

References

  1. Karami J, Masoumi M, Khorramdelazad H, Bashiri H, Darvishi P, Sereshki HA et al (2020) Role of autophagy in the pathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches. Life Sci 254:117734. https://doi.org/10.1016/j.lfs.2020.117734

    Article  CAS  PubMed  Google Scholar 

  2. Edilova MI, Akram A, Abdul-Sater AA (2020) Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. https://doi.org/10.1016/j.bj.2020.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Intriago M, Maldonado G, Cárdenas J, Ríos C (2019) Clinical characteristics in patients with rheumatoid arthritis: differences between genders. Sci World J. https://doi.org/10.1155/2019/8103812

    Article  Google Scholar 

  4. Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA et al (2019) Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet 10:1–13. https://doi.org/10.3389/fgene.2019.00570

    Article  CAS  Google Scholar 

  5. Yap H-Y, Tee S, Wong M, Chow S-K, Peh S-C, Teow S-Y (2018) Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells 7:161. https://doi.org/10.3390/cells7100161

    Article  CAS  PubMed Central  Google Scholar 

  6. Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571:489–499. https://doi.org/10.1038/s41586-019-1411-0

    Article  CAS  PubMed  Google Scholar 

  7. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M (2017) Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 19:1–12. https://doi.org/10.1186/s13075-017-1303-3

    Article  CAS  Google Scholar 

  8. Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A et al (2020) Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 98:171–186. https://doi.org/10.1111/imcb.12311

    Article  PubMed  Google Scholar 

  9. Chang K, Yang SM, Kim SH, Han KH, Park SJ, Shin JI (2014) Smoking and rheumatoid arthritis. Int J Mol Sci 15:22279–22295. https://doi.org/10.3390/ijms151222279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frank-Bertoncelj M, Klein K, Gay S (2017) Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 9:493–504. https://doi.org/10.2217/epi-2016-0142

    Article  CAS  PubMed  Google Scholar 

  11. Ciechomska M, Roszkowski L, Maslinski W (2019) DNA methylation as a future therapeutic and diagnostic target in rheumatoid arthritis Cells 8(9):953. https://doi.org/10.3390/cells8090953

  12. Glant TT, Mikecz K, Rauch TA (2014) Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med 12:1–5. https://doi.org/10.1186/1741-7015-12-35

    Article  CAS  Google Scholar 

  13. Ziegler SF, Buckner JH (2009) FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect 11:594–598. https://doi.org/10.1016/j.micinf.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nygaard G, Firestein GS (2020) Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 16:316–333. https://doi.org/10.1038/s41584-020-0413-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo S, Xu L, Chang C, Zhang R, Jin Y, He D (2020) Epigenetic regulation mediated by methylation in the pathogenesis and precision medicine of rheumatoid arthritis. Front Genet 11:1–9. https://doi.org/10.3389/fgene.2020.00811

    Article  CAS  Google Scholar 

  16. Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B et al (2017) Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 87:596–608. https://doi.org/10.1016/j.biopha.2016.12.072

    Article  CAS  PubMed  Google Scholar 

  17. Papin C, Ibrahim A, Le Gras S, Velt A, Stoll I, Jost B et al (2017) Combinatorial DNA methylation codes at repetitive elements. Genome Res 27:934–946. https://doi.org/10.1101/gr.213983.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Neill RJ, Vrana PB, Rosenfeld CS (2014) Maternal methyl supplemented diets and effects on offspring health. Front Genet 5:1–11. https://doi.org/10.3389/fgene.2014.00289

    Article  CAS  Google Scholar 

  19. Rider CF, Carlsten C (2019) Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenet 11:1–15. https://doi.org/10.1186/s13148-019-0713-2

    Article  CAS  Google Scholar 

  20. Karagianni P, Tzioufas AG (2019) Epigenetic perspectives on systemic autoimmune disease. J Autoimmun. https://doi.org/10.1016/j.jaut.2019.102315

    Article  PubMed  Google Scholar 

  21. Gujar H, Weisenberger DJ, Liang G (2019) The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes (Basel). https://doi.org/10.3390/genes10020172

    Article  Google Scholar 

  22. Brandt B, Rashidiani S, Bán Á, Rauch TA (2019) DNA methylation-governed gene expression in autoimmune arthritis. Int J Mol Sci. https://doi.org/10.3390/ijms20225646

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu H, Wu LF, Mo XB, Lu X, Tang H, Zhu XW et al (2019) Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann Rheum Dis 78:36–42. https://doi.org/10.1136/annrheumdis-2018-213970

    Article  CAS  PubMed  Google Scholar 

  24. Karouzakis E, Gay RE, Gay S, Neidhart M (2012) Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 64:1809–1817. https://doi.org/10.1002/art.34340

    Article  CAS  PubMed  Google Scholar 

  25. Karouzakis E, Raza K, Kolling C, Buckley CD, Gay S, Filer A et al (2018) Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci Rep 8:1–6. https://doi.org/10.1038/s41598-018-24240-2

    Article  CAS  Google Scholar 

  26. Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A et al (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002750

    Article  PubMed  PubMed Central  Google Scholar 

  27. Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT et al (2014) Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics 9:1228–1237. https://doi.org/10.4161/epi.29718

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu CC, Fang TJ, Ou TT, Wu CC, Li RN, Lin YC et al (2011) Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol Lett 135:96–99. https://doi.org/10.1016/j.imlet.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  29. Kennedy A, Schmidt EM, Cribbs AP, Penn H, Amjadi P, Syed K et al (2014) A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibits dysregulated methylation in rheumatoid arthritis Treg cells. Eur J Immunol 44:2968–2978. https://doi.org/10.1002/eji.201444453

    Article  CAS  PubMed  Google Scholar 

  30. Zhao M, Wang Z, Yung S, Lu Q (2015) Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2015.05.022

    Article  PubMed  Google Scholar 

  31. Angiolilli C, Kabala PA, Grabiec AM, Van Baarsen IM, Ferguson BS, García S et al (2017) Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann Rheum Dis 76:277–285. https://doi.org/10.1136/annrheumdis-2015-209064

    Article  CAS  PubMed  Google Scholar 

  32. Karouzakis E, Trenkmann M, Gay RE, Michel BA, Gay S, Neidhart M (2014) Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts. J Immunol 193:4945–4951. https://doi.org/10.4049/jimmunol.1400066

    Article  CAS  PubMed  Google Scholar 

  33. Picascia A, Grimaldi V, Pignalosa O, De Pascale MR, Schiano C, Napoli C (2015) Epigenetic control of autoimmune diseases: from bench to bedside. Clin Immunol 157:1–15. https://doi.org/10.1016/j.clim.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  34. Miao CG, Yang YY, He X, Li J (2013) New advances of DNA methylation and histone modifications in rheumatoid arthritis, with special emphasis on MeCP2. Cell Signal 25:875–882. https://doi.org/10.1016/j.cellsig.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  35. Trenkmann M, Brock M, Gay RE, Kolling C, Speich R, Michel BA et al (2011) Expression and function of EZH2 in synovial fibroblasts: epigenetic repression of the Wnt inhibitor SFRP1 in rheumatoid arthritis. Ann Rheum Dis 70:1482–1488. https://doi.org/10.1136/ard.2010.143040

    Article  CAS  PubMed  Google Scholar 

  36. Webster AP, Plant D, Ecker S, Zufferey F, Bell JT, Feber A et al (2018) Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med 10:1–12. https://doi.org/10.1186/s13073-018-0575-9

    Article  CAS  Google Scholar 

  37. Wang Y, He J, Liao M, Hu M, Li W, Ouyang H et al (2019) An overview of Sirtuins as potential therapeutic target: structure, function and modulators. Eur J Med Chem 161:48–77. https://doi.org/10.1016/j.ejmech.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  38. Kong S, Yeung P, Fang D (2013) The class III histone deacetylase sirtuin 1 in immune suppression and its therapeutic potential in rheumatoid arthritis. J Genet Genomics 40:347–354. https://doi.org/10.1016/j.jgg.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moon MH, Jeong JK, Lee YJ, Seol JW, Jackson CJ, Park SY (2013) SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. Osteoarthr Cartil 21:470–480. https://doi.org/10.1016/j.joca.2012.11.017

    Article  Google Scholar 

  40. Mendes KL, Lelis DDF, Santos SHS (2017) Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 38:98–105. https://doi.org/10.1016/j.cytogfr.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  41. Niederer F, Ospelt C, Brentano F, Hottiger MO, Gay RE, Gay S et al (2011) SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann Rheum Dis 70:1866–1873. https://doi.org/10.1136/ard.2010.148957

    Article  CAS  PubMed  Google Scholar 

  42. Kulikowski E, Rakai BD, Wong NCW (2021) Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 41:223–245. https://doi.org/10.1002/med.21730

    Article  CAS  PubMed  Google Scholar 

  43. Xiao Y, Liang L, Huang M, Qiu Q, Zeng S, Shi M et al (2016) Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes. Rheumatol (UK) 55:173–184. https://doi.org/10.1093/rheumatology/kev312

    Article  CAS  Google Scholar 

  44. Klein K (2018) Bromodomain protein inhibition: a novel therapeutic strategy in rheumatic diseases. RMD Open 4:e000744. https://doi.org/10.1136/rmdopen-2018-000744

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martin GV, Kanaan SB, Hemon MF, Azzouz DF, El Haddad M, Balandraud N et al (2019) Mosaicism of XX and XXY cells accounts for high copy number of toll like receptor 7 and 8 genes in peripheral blood of men with rheumatoid arthritis. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-49309-4

    Article  CAS  Google Scholar 

  46. Ballestar E (2011) Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol 7:263–271. https://doi.org/10.1038/nrrheum.2011.16

    Article  CAS  PubMed  Google Scholar 

  47. Takheaw N, Earwong P, Laopajon W, Pata S, Kasinrerk W (2019) Interaction of CD99 and its ligand upregulates IL-6 and TNF-α upon T cell activation. PLoS ONE 14:1–19. https://doi.org/10.1371/journal.pone.0217393

    Article  CAS  Google Scholar 

  48. Moran-Moguel MC, Del RSP, Mayorquin-Galvan EE, Zavala-Cerna MG (2018) Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res. https://doi.org/10.1155/2018/2474529

    Article  PubMed  PubMed Central  Google Scholar 

  49. Corsiero E, Marrelli A (2018) An update on research advances in rheumatoid arthritis: from clinic to basic science. J Lab Precis Med 3:54–54. https://doi.org/10.21037/jlpm.2018.06.03

    Article  Google Scholar 

  50. Dong L, Wang X, Tan J, Li H, Qian W, Chen J et al (2014) Decreased expression of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 18:2213–2224. https://doi.org/10.1111/jcmm.12353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:1–12. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  52. Ayeldeen G, Nassar Y, Ahmed H, Shaker O, Gheita T (2018) Possible use of miRNAs-146a and -499 expression and their polymorphisms as diagnostic markers for rheumatoid arthritis. Mol Cell Biochem 449:145–156. https://doi.org/10.1007/s11010-018-3351-7

    Article  CAS  PubMed  Google Scholar 

  53. Fu H, Hu D, Zhang L, Tang P (2018) Role of extracellular vesicles in rheumatoid arthritis. Mol Immunol 93:125–132. https://doi.org/10.1016/j.molimm.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  54. Lu MC, Yu CL, Chen HC, Yu HC, Huang HB, Lai NS (2014) Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production. Clin Exp Immunol 177:641–651. https://doi.org/10.1111/cei.12374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murata K, Yoshitomi H, Furu M, Ishikawa M, Shibuya H, Ito H et al (2014) Microrna-451 down-regulates neutrophil chemotaxis via p38 mapk. Arthritis Rheumatol 66:549–559. https://doi.org/10.1002/art.38269

    Article  CAS  PubMed  Google Scholar 

  56. Sánchez-Pernaute O (2010) Epigenetic therapies, a step beyond biologics for rheumatoid arthritis. Reumatol Clínica (Engl Ed) 6:306–310. https://doi.org/10.1016/s2173-5743(10)70072-1

    Article  Google Scholar 

  57. Krishna V, Yin X, Song Q, Walsh A, Pocalyko D, Bachman K et al (2021) Integration of the transcriptome and genome-wide landscape of BRD2 and BRD4 binding motifs identifies key superenhancer genes and reveals the mechanism of bet inhibitor action in rheumatoid arthritis synovial fibroblasts. J Immunol 206:422–431. https://doi.org/10.4049/jimmunol.2000286

    Article  CAS  PubMed  Google Scholar 

  58. Kantarjian HM, Roboz GJ, Kropf PL, Yee KWL, O’Connell CL, Tibes R et al (2017) Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol 18:1317–1326. https://doi.org/10.1016/S1470-2045(17)30576-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C (2018) Targeting DNA methyltranferases in urological tumors. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00366

    Article  PubMed  PubMed Central  Google Scholar 

  60. Plummer R, Vidal L, Griffin M, Lesley M, De Bono J, Coulthard S et al (2009) Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin Cancer Res 15:3177–3183. https://doi.org/10.1158/1078-0432.CCR-08-2859

    Article  CAS  PubMed  Google Scholar 

  61. Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164. https://doi.org/10.1097/CAD.0b013e3282a215e9

    Article  CAS  PubMed  Google Scholar 

  62. Chen L, Jin T, Zhu K, Piao Y, Quan T, Quan C et al (2017) PI3K/mTOR dual inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A synergistically exert anti-tumor activity in breast cancer. Oncotarget 8:11937–11949. https://doi.org/10.18632/oncotarget.14442

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kirschbaum MH, Foon KA, Frankel P, Ruel C, Pulone B, Tuscano JM et al (2014) A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk Lymphoma 55:2301–2304. https://doi.org/10.3109/10428194.2013.877134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sivaraj D, Green MM, Gasparetto C (2017) Panobinostat for the management of multiple myeloma. Futur Oncol 13:477–488. https://doi.org/10.2217/fon-2016-0329

    Article  CAS  Google Scholar 

  65. Klein K, Gay S (2013) Epigenetic modifications in rheumatoid arthritis, a review. Curr Opin Pharmacol. https://doi.org/10.1016/j.coph.2013.01.007

    Article  PubMed  Google Scholar 

  66. Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Baumann P (2010) The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Haematol 149:518–528. https://doi.org/10.1111/j.1365-2141.2010.08124.x

    Article  CAS  PubMed  Google Scholar 

  67. He B, Dai L, Zhang X, Chen D, Wu J, Feng X et al (2018) The HDAC inhibitor quisinostat (JNJ-26481585) supresses hepatocellular carcinoma alone and synergistically in combination with sorafenib by G0/G1 phase arrest and apoptosis induction. Int J Biol Sci 14:1845–1858. https://doi.org/10.7150/ijbs.27661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deutsch E, Moyal ECJ, Gregorc V, Zucali PA, Menard J, Soria JC et al (2017) A phase 1 dose-escalation study of the oral histone deacetylase inhibitor abexinostat in combination with standard hypofractionated radiotherapy in advanced solid tumors. Oncotarget 8:56199–56209. https://doi.org/10.18632/oncotarget.14147

    Article  PubMed  Google Scholar 

  69. Cao J, Lv W, Wang L, Xu J, Yuan P, Huang S et al (2018) Ricolinostat (ACY-1215) suppresses proliferation and promotes apoptosis in esophageal squamous cell carcinoma via miR-30d/PI3K/AKT/mTOR and ERK pathways. Cell Death Dis. https://doi.org/10.1038/s41419-018-0788-2

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eigl BJ, North S, Winquist E, Finch D, Wood L, Sridhar SS et al (2015) A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest New Drugs 33:969–976. https://doi.org/10.1007/s10637-015-0252-4

    Article  CAS  PubMed  Google Scholar 

  71. De Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V et al (2008) Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res 14:6663–6673. https://doi.org/10.1158/1078-0432.CCR-08-0376

    Article  CAS  PubMed  Google Scholar 

  72. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H et al (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62:4916–4921

    CAS  PubMed  Google Scholar 

  73. Loprevite M, Tiseo M, Grossi F, Scolaro T, Semino C, Pandolfi A et al (2005) In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol Res 15:39–48. https://doi.org/10.3727/096504005775082066

    Article  CAS  PubMed  Google Scholar 

  74. Chan E, Chiorean EG, O’Dwyer PJ, Gabrail NY, Alcindor T, Potvin D et al (2018) Phase I/II study of mocetinostat in combination with gemcitabine for patients with advanced pancreatic cancer and other advanced solid tumors. Cancer Chemother Pharmacol 81:355–364. https://doi.org/10.1007/s00280-017-3494-3

    Article  CAS  PubMed  Google Scholar 

  75. Zhijun H, Shusheng W, Han M, Jianping L, Li-sen Q, Dechun L (2016) Pre-clinical characterization of 4SC-202, a novel class I HDAC inhibitor, against colorectal cancer cells. Tumor Biol 37:10257–10267. https://doi.org/10.1007/s13277-016-4868-6

    Article  CAS  Google Scholar 

  76. Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K et al (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47:2073–2081. https://doi.org/10.3892/ijo.2015.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi X, Zheng C, Li C, Hou K, Wang X, Yang Z et al (2018) 4-Phenybutyric acid promotes gastric cancer cell migration via histone deacetylase inhibition-mediated HER3/HER4 up-regulation. Cell Biol Int 42:53–62. https://doi.org/10.1002/cbin.10866

    Article  CAS  PubMed  Google Scholar 

  78. Vojinovic J, Damjanov N, D’Urzo C, Furlan A, Susic G, Pasic S et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458. https://doi.org/10.1002/art.30238

    Article  CAS  PubMed  Google Scholar 

  79. Lin H-S, Hu C-Y, Chan H-Y, Liew Y-Y, Huang H-P, Lepescheux L et al (2007) Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol 150:862–872. https://doi.org/10.1038/sj.bjp.0707165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miao C, Yang Y, He X, Li J (2013) New advances of DNA methylation and histone modifications in rheumatoid arthritis, with special emphasis on MeCP2. Cell Signal 25:875–882. https://doi.org/10.1016/j.cellsig.2012.12.017

  81. Chen YJ, Wang WH, Wu WY, Hsu CC, Wei LR, Wang SF et al (2017) Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS ONE 12:1–18. https://doi.org/10.1371/journal.pone.0183368

    Article  CAS  Google Scholar 

  82. Van Der Ree MH, Van Der Meer AJ, Van Nuenen AC, De Bruijne J, Ottosen S, Janssen HL et al (2016) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 43:102–113. https://doi.org/10.1111/apt.13432

    Article  CAS  PubMed  Google Scholar 

  83. van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M, Rietdijk S et al (2017) Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389:709–717. https://doi.org/10.1016/S0140-6736(16)31715-9

    Article  CAS  PubMed  Google Scholar 

  84. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35:180–188. https://doi.org/10.1007/s10637-016-0407-y

    Article  CAS  PubMed  Google Scholar 

  85. Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M et al (2018) Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 183:428–444. https://doi.org/10.1111/bjh.15547

    Article  CAS  PubMed  Google Scholar 

  86. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S et al (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-019-0095-0

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB (2021) Recent developments of HDAC inhibitors: emerging indications and novel molecules. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14889

    Article  PubMed  Google Scholar 

  88. Zhang S, Cheng Z, Wang Y, Han T (2021) The Risks of miRNA therapeutics: in a drug target perspective. Drug Des Dev Ther 15:721–733. https://doi.org/10.2147/DDDT.S288859

    Article  Google Scholar 

  89. Shorstova T, Foulkes WD, Witcher M (2021) Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer 124:1478–1490. https://doi.org/10.1038/s41416-021-01321-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [LKB]; Writing—original draft preparation: [RRB]; Writing—review and editing: [LKB].

Corresponding author

Correspondence to Lokesh Kumar Bhatt.

Ethics declarations

Conflict of interest

None.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

No part of the final manuscript, including ideas, tables and figures, is copied or published elsewhere in whole or in part.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, R.R., Bhatt, L.K. Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int 41, 2047–2067 (2021). https://doi.org/10.1007/s00296-021-04951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-021-04951-y

Keywords

Navigation