Skip to main content
Log in

Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Insect pathogenic fungi, also known as entomopathogenic fungi, are one of the largest insect pathogenic microorganism communities, represented by Beauveria spp. and Metarhizium spp. Entomopathogenic fungi have been proved to be a great substitute for chemical pesticide in agriculture. In fact, a lot of functional genes were also already characterized in entomopathogenic fungi, but more depth of exploration is still needed to reveal their complicated pathogenic mechanism to insects. Metarhizium rileyi (Nomuraea rileyi) is a great potential biocontrol fungus that can parasitize more than 40 distinct species (mainly Lepidoptera: Noctuidae) to cause large-scale infectious diseases within insect population. In this study, a comparative analysis of transcriptome profile was performed with topical inoculation and hemolymph injection to character the infectious pattern of M. rileyi. Appressorium and multiple hydrolases are indispensable constituents to break the insect host primary cuticle defense in entomopathogenic fungi. Within our transcriptome data, numerous transcripts related to destruction of insect cuticle rather growth regulations were obtained. Most importantly, some unreported ribosomal protein genes and novel unannotated protein (hypothetical protein) genes were proved to participate in the course of pathogenic regulation. Our current data provide a higher efficiency gene library for virulence factors screen in M. rileyi, and this library may be also useful for furnishing valuable information on entomopathogenic fungal pathogenic mechanisms to host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Andersen JS, Andersen SO, Højrup P, Roepstorff P (1993) Primary structure of a 14 kDa basic structural protein (Lm-76) from the cuticle of the migratory locust Locusta migratoria. Insect Biochem Mol Biol 23(3):391–402

    Article  PubMed  CAS  Google Scholar 

  • Aufy M, Abdelaziz RF, Hussein AM, Topcagic N, Shamroukh H, Abdel-Maksoud MA, Salem TZ, Studenik CR (2023) Impact of enniatin B and Beauvericin on lysosomal cathepsin B secretion and apoptosis induction. Int J Mol Sci 24(3):2030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 a resolution. Science 334(6062):1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Ceci M, Fazi F (1867) Romano N (2021) The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 4:166046

    Google Scholar 

  • Chang HY, Tong CBS (2021) Using edger software to analyze complex RNA-seq data. Acta Hort 1307:171–176

    Article  Google Scholar 

  • Dang Y, Yang Q, Xue Z, Liu Y (2021) RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10(9):1148–1155

    Article  Google Scholar 

  • Dinman JD (2016) Pathways to specialized ribosomes: the brussels lecture. J Mol Biol 428(10 Pt B):2186–2194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dionisio G, Kryger P, Steenberg T (2016) Label-Free differential proteomics and quantification of exoenzymes from isolates of the entomopathogenic fungus Beauveria bassiana. InSects 7(4):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Doucet D, Retnakaran A (2012) Insect chitin: metabolism, genomics and pest management. Adv Insect Physiol 43:437–511

    Article  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73(1):295–302

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, Pei Y (2009a) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102(2):155–159

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Pava-ripoll M, Wang S, St Leger R (2009b) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus Metarhizium anisopliae. Fungal Genet Biol 46(3):277–285

    Article  PubMed  CAS  Google Scholar 

  • Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2007) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170(4):739–752

    Article  Google Scholar 

  • Freimoser FM, Hu G, Leger RJS (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology (reading) 151(Pt 2):361–371

    Article  PubMed  CAS  Google Scholar 

  • Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X (2022) Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 32(3):254–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Hernández GA, Padilla-Guerrero IE, Martínez-Vázquez A, Torres-Guzmán JC (2020) Virulence factors of the entomopathogenic genus Metarhizium. Curr Protein Pept Sci 21(3):324–330

    Article  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24(4):1327–1351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamodrakas SJ, Willis JH, Iconomidou VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem Mol Biol 32(11):1577–1583

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Hong S, Tang G, Lu Y, Wang C (2019) Unveiling the function and regulation control of the DUF3129 family proteins in fungal infection of hosts. Philos Trans R Soc Lond B Biol Sci 374(1767):20180321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husson E, Hadad C, Huet G, Laclef S, Nhien NV (2017) Effect of room temperature ionic liquids on selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem 19(17):4122–4131

    Article  CAS  Google Scholar 

  • Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, Tayyab M, Noman A, Nisar MS, Khan KA, Ali H (2021) Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 159:105122

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson CB, Jones K, Zhu J, Dorhmi S, Khang CH (2017) The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Fungal Genet Biol 98:35–38

    Article  PubMed  CAS  Google Scholar 

  • Jiang SS, Yin YP, Song ZY, Zhou GL, Wang ZK (2014) Raca and cdc42 regulate polarized growth and microsclerotium formation in the dimorphic fungus Nomuraea rileyi. Res Microbiol 165(3):233–242

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Han L, Xia Y (2014) MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. J Invertebr Pathol 115:68–75

    Article  PubMed  CAS  Google Scholar 

  • Juntachai W, Kajiwara S (2015) Differential expression of extracellular lipase and protease activities of mycelial and yeast forms in Malassezia furfur. Mycopathologia 180(3–4):143–151

    Article  PubMed  CAS  Google Scholar 

  • Kou Y, Naqvi NI (2016) Surface sensing and signaling networks in plant pathogenic fungi. Semin Cell Dev Biol 57:84–92

    Article  PubMed  CAS  Google Scholar 

  • Laiolo P, Pato J, Illera JC, Obeso JR (2021) Selection for functional performance in the evolution of cuticle hardening mechanisms in insects. Evolution 75(5):1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Marcet-Houben M, Ballester AR, Fuente BDL, Harries E, Marcos JF, González-Candelas L, Gabaldón T (2012) Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics 13(1):646

    Article  PubMed  PubMed Central  Google Scholar 

  • Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C (2005) Involvement of chitin in exoskeleton morphogenesis in drosophila melanogaster. J Morphol 264(1):117–130

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan S, Mun S, Noh MY, Geisbrecht ER, Arakane Y (2020) Insect cuticular chitin contributes to form and function. Curr Pharm Design 26(29):3530–3545

    Article  CAS  Google Scholar 

  • Purushothaman K, Bhat SK, Singh SA, Marathe GK, Appu Rao ARG (2019) Aspartic protease from Aspergillus niger: molecular characterization and interaction with pepstatin A. Int J Biol Macromol 139:199–212

    Article  PubMed  CAS  Google Scholar 

  • Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NA, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J et al (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46(4):287–298

    Article  PubMed  CAS  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89(3):501–512

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 a resolution. Science 310(5749):827–834

    Article  PubMed  CAS  Google Scholar 

  • Shin TY, Lee MR, Park SE, Lee SJ, Kim WJ, Kim JS (2020) Pathogenesis-related genes of entomopathogenic fungi. Arch Insect Biochem Physiol 105(4):e21747

    Article  PubMed  CAS  Google Scholar 

  • Sleumer MC, Wei G, Wang Y, Chang H, Xu T, Chen R, Zhang MQ (2012) Regulatory elements of Caenorhabditis elegans ribosomal protein genes. BMC Genomics 13:433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srisukchayakul P, Chanpen W, Somsak P (2005) Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. Science Asia 31(3):273–276

    Article  Google Scholar 

  • Staats CC, Junges A, Guedes RL, Thompson CE, de Morais GL, Boldo JT, de Almeida LG, Andreis FC, Gerber AL, Sbaraini N, da Paixão RL, Broetto L, Landell M, Santi L, Beys-da-Silva WO, Silveira CP, Serrano TR, de Oliveira ES, Kmetzsch L, Vainstein MH et al (2014) Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 15:822

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterkel M, Ons S, Oliveira PL (2019) DOPA decarboxylase is essential for cuticle tanning in Rhodnius prolixus (Hemiptera: Reduviidae), affecting ecdysis, survival and reproduction. Insect Biochem Mol Biol 108:24–31

    Article  PubMed  CAS  Google Scholar 

  • Su X, Jiao R, Liu Z, Xia Y, Cao Y (2021) Functional and characteristic analysis of an appressorium-specific promoter PMagas1 in Metarhizium acridum. J Invertebr Pathol 182:107565

    Article  PubMed  CAS  Google Scholar 

  • Theunissen TW, Jaenisch R (2017) Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 144(24):4496–4509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valero-Jiménez CA, Wiegers H, Zwaan BJ, Koenraadt CJ, van Kan JA (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49

    Article  PubMed  Google Scholar 

  • Wang X, Xie X, Xie K, Liu Q, Li Y, Tan X, Dong H, Li X, Dong Z, Xia Q, Zhao P (2022) Chitin and cuticle proteins form the cuticular layer in the spinning duct of silkworm. Acta Biomater 145:260–271

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Huang Y, Du J (2004) Sex pheromones and reproductive behavior of Spodoptera litura (Fabricius) moths reared from larvae treated with four insecticides. J Chem Ecol 30(7):1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Du Y, Jin K, Xia Y (2017) The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Appl Microbiol Biotechnol 101(23–24):8571–8584

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1985) Sclerotin and lipid in the waterproofing of the insect cuticle. Tissue Cell 17(2):227–248

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN, Doudna Cate JH (2012) The structure and function of the eukaryotic ribosome. Csh Perspect Biol 4(5):a011536

    Google Scholar 

  • Włóka E (2011) Extracellular hydrolytic enzymes produced by entomopathogenic fungi–role in an infection process. Postepy Biochem 57(1):115–121

    PubMed  Google Scholar 

  • Zafar J, Zhang Y, Huang J, Freed S, Shoukat RF, Xu X, Jin F (2021) Spatio-Temporal profiling of Metarhizium anisopliae-responsive microRNAs involved in modulation of Plutella xylostella immunity and development. J Fungi (basel) 7(11):942

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Zhang P, Zhang Q, Zhao H, Li Z, Zhang X, Wang C, Yin WB, Fang W (2018) Duplication of a Pks gene cluster and subsequent functional diversification facilitate environmental adaptation in Metarhizium species. Plos Genet 14(6):e1007472

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Jiang X, Wang G, Luo Z, Fan Y, Wu Z, Pei Y (2010) Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 76(7):2262–2270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Lu A, Kong L, Zhang Q, Ling E (2014) Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 289(52):35891–35906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Bian Z, Xu JR (2018) Assays for MAP kinase activation in Magnaporthe oryzae and other plant pathogenic fungi. Methods Mol Biol 1848:93–101

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G, Qian Y, Liu R, Guo N, Mi W, Meng Y, Leger RJS, Fang W (2019) Horizontal gene transfer allowed the emergence of broad host range entomopathogens. PNAS 116(16):7982–7989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by Department of Science and Technology Planning Project of Henan Province (Nos. 222102110102, 222102110015 and 222102320365), the National Natural Science Foundation of China (Nos. 3220151928), and the Scientific Research Support Project of Zhoukou Normal University (ZKNUC2021049, ZKNUC2021050 and ZKNUC2020045).

Author information

Authors and Affiliations

Authors

Contributions

YL, ZW and LF designed the experiments; XL, BL, JW and LH conducted the experiments under the supervision of YL, ZW and LF; YL and HL wrote the manuscript.

Corresponding author

Correspondence to Yunlong Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by M. Polymenis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Li, X., Li, H. et al. Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi. Curr Genet 69, 253–265 (2023). https://doi.org/10.1007/s00294-023-01274-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-023-01274-2

Keywords

Navigation