Skip to main content

Assays for MAP Kinase Activation in Magnaporthe oryzae and Other Plant Pathogenic Fungi

  • Protocol
  • First Online:
Plant Pathogenic Fungi and Oomycetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1848))

Abstract

Mitogen-activated protein (MAP) kinases have the hallmark motif TXY and function in key signal transduction pathways in eukaryotic organisms. Most ascogenous plant pathogenic fungi have three MAPK pathways that regulate different developmental and infection processes. In the rice blast fungus Magnaporthe oryzae, the Pmk1 and Mps1 MAP kinases with the TEY motif are essential for appressorium formation, penetration, and invasive growth. Osm1 is the third MAP kinase that has the TGY motif and functions in osmoregulation. Although orthologs of Pmk1 and Mps1 are important for pathogenesis in all the plant pathogens studied, Osm1 orthologs have species-specific roles in stress responses and pathogenesis. Because of their functions in fungal development and pathogenesis, it is important to determine the expression and activation of MAP kinases under different growth conditions or infection stages. In this chapter, we describe methods for protein extraction and detection of the activation of the three MAP kinases in M. oryzae with the commercially available anti-TpEY or anti-TpGY phosphorylation-specific antibodies. Similar approaches can be used to monitor MAP kinase activation in other plant pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6(10):1701–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamel LP, Nicole MC, Duplessis S et al (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24(4):1327–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773(8):1227–1237

    Article  CAS  PubMed  Google Scholar 

  4. Pearson G, Robinson F, Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    PubMed  CAS  Google Scholar 

  5. Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    Article  CAS  PubMed  Google Scholar 

  6. Zhao X, Kim Y, Park G et al (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17(4):1317–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10(21):2696–2706

    Article  CAS  PubMed  Google Scholar 

  8. Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci U S A 95(21):12713–12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon KP, Xu JR, Smirnoff N et al (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11(10):2045–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li G, Zhou X, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15(6):678–684

    Article  CAS  PubMed  Google Scholar 

  11. Liu W, Zhou X, Li G et al (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7(1):e1001261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Liu W, Li Y et al (2017) Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ Microbiol 19(10):4190–4204

    Article  CAS  PubMed  Google Scholar 

  13. Li G, Zhang X, Tian H et al (2017) MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 19(5):1959–1974

    Article  CAS  PubMed  Google Scholar 

  14. Zheng D, Zhang S, Zhou X et al (2012) The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 7(11):e49495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramamoorthy V, Zhao X, Snyder AK et al (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 9(6):1491–1506

    Article  CAS  PubMed  Google Scholar 

  16. Leung H, Borromeo ES, Bernardo MA et al (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78(9):1227–1233

    Article  Google Scholar 

  17. Jones CG, Hare DJ, Compton SJ (1989) Measuring plant protein with the Bradford assay: 1. Evaluation and standard method. J Chem Ecol 15(3):979–992

    Article  CAS  PubMed  Google Scholar 

  18. Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Protein Sci Chapter 10:Unit 10.1.1-44

    Google Scholar 

  19. Gilda JE, Gomes AV (2015) Western blotting using in-gel protein labeling as a normalization control: stain-free technology. Proteomic Profiling: Methods and Protocols 1295:381–391

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from US Wheat and Barley Scab Initiative and a grant from the National Research Initiative of the United States Department of Agriculture National Institute for Food and Agriculture (award number 2013-68004-20378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Rong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., Bian, Z., Xu, JR. (2018). Assays for MAP Kinase Activation in Magnaporthe oryzae and Other Plant Pathogenic Fungi. In: Ma, W., Wolpert, T. (eds) Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology, vol 1848. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8724-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8724-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8723-8

  • Online ISBN: 978-1-4939-8724-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics