Skip to main content
Log in

Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 55:539–552

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 2:458–459

    Article  Google Scholar 

  • Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bem AE et al (2015) Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 10:213–224

  • Benanti JA (2016) Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Curr Genet 62(2):271–276

    Article  PubMed  CAS  Google Scholar 

  • Butler G (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23(1):140–159

  • Calera JA, Calderone R (1999) Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses 42(Suppl 2):49–53

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapeland-Leclerc F et al (2007) Differential involvement of histidine kinase receptors in pseudohyphal development, stress adaptation, and drug sensitivity of the opportunistic yeast Candida lusitaniae. Eukaryot Cell 6:1782–1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439

    Article  CAS  Google Scholar 

  • Corrochano LM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biol 26:1577–1584

    Article  CAS  Google Scholar 

  • Day AM et al (2017) Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathog 13:e1006131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Defosse TA et al (2015) Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95:914–924

  • Dereeper A et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

  • Derouiche A, Shi L, Kalantari A, Mijakovic I (2016) Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common? Curr Genet 62(1):67–70

    Article  PubMed  CAS  Google Scholar 

  • Dujon BA, Louis EJ. (2017) Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics. 206:717–750

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fassler JS, West AH (2013) Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Eukaryot Cell 12:1052–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferris HU et al (2011) The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure 19:378–385

  • Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230

    Article  PubMed  CAS  Google Scholar 

  • Foureau E et al (2014) Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genet Biol 65:25–36

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Randhawa K, Kaur H, Mondal AK, Hohmann S (2012) Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett 586:2417–2422

    Article  PubMed  CAS  Google Scholar 

  • Gregori C et al (2007) The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker’s yeast. Eukaryot Cell 6:1635–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gushchin I et al (2017) Mechanism of transmembrane signaling by sensor histidine kinases. Science 356(6342):eaah6345

    Article  PubMed  CAS  Google Scholar 

  • He XJ, Mulford KE, Fassler JS (2009) Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot Cell. 8(5):768–778

  • Hérivaux A et al (2016) Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog 12:e1005683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hérivaux A et al (2017) The identification of phytohormone receptor homologs in early diverging fungi suggests a role for plant sensing in land colonization by fungi. MBio. 8(1):e01739–e01716

    Article  PubMed  PubMed Central  Google Scholar 

  • Hittinger CT et al (2015) Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 35:100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    Article  PubMed  CAS  Google Scholar 

  • Jacob S, Foster AJ, Yemelin A, Thines E. 2014. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen 3:668–687

  • Lavín JL, Ramírez L, Ussery DW, Pisabarro AG, Oguiza JA (2010) Genomic analysis of two-component signal transduction proteins in Basidiomycetes. J Mol Microbiol Biotechnol 18:63–73

    Article  PubMed  CAS  Google Scholar 

  • Lawry SM et al (2017) Fludioxonil induces Drk1, a fungal group III Hybrid Histidine Kinase, to dephosphorylate its downstream target, Ypd1. Antimicrob Agents Chemother 61(2):e01414–e01416

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li S et al (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17:6952–6962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Agrellos OA, Calderone R (2010) Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol 13:424–430

    Article  PubMed  CAS  Google Scholar 

  • Lu JM, Deschenes RJ, Fassler JS (2003) Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot Cell 2:1304–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369(6477):242–245

    Article  PubMed  CAS  Google Scholar 

  • Mavrianos J et al (2013) Mitochondrial two-component signaling systems in Candida albicans. Eukaryot Cell 12:913–922

  • Mavrianos J, Desai C, Chauhan N (2014) Two-component histidine phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Eukaryot Cell 13:452–460

  • Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP repeats act as an osmosensing molecular switch in a group III hybrid histidine kinase. J Biol Chem 285:12121–12132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Möglich A, Ayers RA, Moffat K (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morel G et al (2015) Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep 5:11571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagahashi S et al (1998) Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144:425–432

  • Navarro-Arias MJ et al (2017) Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host-pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Res Microbiol

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262(5133):566–569

    Article  PubMed  CAS  Google Scholar 

  • Pais P, Costa C, Cavalheiro M, Romão D, Teixeira MC (2016) Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison. Front Cell Infect Microbiol 6:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papon N et al (2006) Molecular cloning and expression of a cDNA encoding a hybrid histidine kinase receptor in tropical periwinkle Catharanthus roseus. Plant Biol (Stuttg) 8:731–736

    Article  CAS  Google Scholar 

  • Papon N, Courdavault V, Clastre M (2014) Biotechnological potential of the fungal CTG clade species in the synthetic biology era. Trends Biotechnol 32:167–168

    Article  PubMed  CAS  Google Scholar 

  • Posas F et al (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  • Randhawa A, Mondal AK (2013) The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains. Biochem Biophys Res Commun 438:140–144

    Article  PubMed  CAS  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riley R et al (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113:9882–9887

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-González M et al (2017) Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis. Mol Microbiol 104:822–836

  • Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R (2017) The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol 33:111

    Article  PubMed  CAS  Google Scholar 

  • Shor E, Chauhan N (2015) A case for two-component signaling systems as antifungal drug targets. PLoS Pathog 11(2):e1004632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005) Regulation of G0 entry by the Pho80–Pho85 cyclin-CDK complex. EMBO J 24:4271–4278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada-Okabe T et al (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181:7243–7247

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang N, Cao L (2017) Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet. https://doi.org/10.1007/s00294-017-0697-4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Pr. J-P Latgé and Pr. B. Dujon (Institut Pasteur, Paris, France) for fruitful discussions and critical reading of this manuscript. We would like to thank the Department of Energy Joint Genome Institute for making available a large series of yeast genomes and also J. Spatafora, J. Magnuson and D. Cullen as PIs of the MycoCosm program for allowing the use of sequences of Cephaloascus albidus, Cephaloascus fragrans, Blastobotrys (Sympodiomyces) attinorum, and Blastobotrys (Trichomonascus) petasosporus. J.L.L. thanks MINECO for the Severo Ochoa Excellence Accreditation (SEV-2016-0644). J.A.O. is supported by research project AGL2011-55971-R of the Spanish National Research Plan and by additional institutional support from the Public University of Navarre.

Author information

Authors and Affiliations

Authors

Contributions

AH, TDDB and PV compiled all sequences. JLL and JAO performed phylogenetic analyses. AG and NP conceived and managed the project. NP and JPB wrote the manuscript.

Corresponding author

Correspondence to Nicolas Papon.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hérivaux, A., Lavín, J.L., de Bernonville, T.D. et al. Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina). Curr Genet 64, 841–851 (2018). https://doi.org/10.1007/s00294-017-0797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0797-1

Keywords

Navigation