Skip to main content
Log in

Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aparicio OM (2013) Location, location, location: it’s all in the timing for replication origins. Genes Dev 27:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y (2005) Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16:2325–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudrimont A, Penkner A, Woglar A, Machacek T, Wegrostek C, Gloggnitzer J, Fridkin A, Klein F, Gruenbaum Y, Pasierbek P, Jantsch V (2010) Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans. PLoS Genet 6:e1001219

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar GA, Amon A (2008) Emerging roles for centromeres in meiosis I chromosome segregation. Nat Rev Genet 9:899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bupp JM, Martin AE, Stensrud ES, Jaspersen SL (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17:587–597

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL (2014) The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. J Cell Biol 204:523–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Hiraoka Y (2001) Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11:1618–1623

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Ding DQ, Imai Y, Yamamoto M, Haraguchi T, Hiraoka Y (1997) Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J 16:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Kurokawa R, Haraguchi T, Hiraoka Y (2004) Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeast Schizosaccharomyces pombe. Genes Cells 9:671–684

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Yamane M, Okamasa K, Mori C, Fukuta N, Matsuda A, Haraguchi T, Hiraoka Y (2014) Chromosomes rein back the spindle pole body during horsetail movement in fission yeast meiosis. Cell Struct Funct 39:93–100

    Article  CAS  PubMed  Google Scholar 

  • Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME (2008) Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392:828–831

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR (1997) The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 8:1461–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111(Pt 6):701–712

    CAS  PubMed  Google Scholar 

  • Ding DQ, Yamamoto A, Haraguchi T, Hiraoka Y (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    Article  CAS  PubMed  Google Scholar 

  • Ding DQ, Haraguchi T, Hiraoka Y (2016a) A cohesin-based structural platform supporting homologous chromosome pairing in meiosis. Curr Genet 62:499–502

    Article  CAS  PubMed  Google Scholar 

  • Ding DQ, Matsuda A, Okamasa K, Nagahama Y, Haraguchi T, Hiraoka Y (2016b) Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe. Chromosoma 125:205–214

    Article  CAS  PubMed  Google Scholar 

  • Fennell A, Fernandez-Alvarez A, Tomita K, Cooper JP (2015) Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation. J Cell Biol 208:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Alvarez A, Bez C, O’Toole ET, Morphew M, Cooper JP (2016) Mitotic nuclear envelope breakdown and spindle nucleation are controlled by interphase contacts between centromeres and the nuclear envelope. Dev Cell 39:544–559

    Article  CAS  PubMed  Google Scholar 

  • Fridkin A, Penkner A, Jantsch V, Gruenbaum Y (2009) SUN-domain and KASH-domain proteins during development, meiosis and disease. Cell Mol Life Sci 66:1518–1533

    Article  CAS  PubMed  Google Scholar 

  • Fridolfsson HN, Starr DA (2010) Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J Cell Biol 191:115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL (2011) The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 7:e1002365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121:961–976

    Article  CAS  PubMed  Google Scholar 

  • Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1 + associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129:1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harigaya Y, Yamamoto M (2007) Molecular mechanisms underlying the mitosis-meiosis decision. Chromosome Res 15:523–537

    Article  CAS  PubMed  Google Scholar 

  • Harper L, Golubovskaya I, Cande WZ (2004) A bouquet of chromosomes. J Cell Sci 117:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Hauf S, Watanabe Y (2004) Kinetochore orientation in mitosis and meiosis. Cell 119:317–327

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Asakawa H, Haraguchi T, Hiraoka Y (2006) Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 17:5173–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka Y, Dernburg AF (2009) The SUN rises on meiotic chromosome dynamics. Dev Cell 17:598–605

    Article  CAS  PubMed  Google Scholar 

  • Hirose Y, Suzuki R, Ohba T, Hinohara Y, Matsuhara H, Yoshida M, Itabashi Y, Murakami H, Yamamoto A (2011) Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I. PLoS Genet 7:e1001329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horigome C, Oma Y, Konishi T, Schmid R, Marcomini I, Hauer MH, Dion V, Harata M, Gasser SM (2014) SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 55:626–639

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Zhou Z, Wang Y, Wang J, Kallgren SP, Kurchuk T, Miller EA, Chang F, Jia S (2012) Csi1 links centromeres to the nuclear envelope for centromere clustering. J Cell Biol 199:735–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspersen SL, Martin AE, Glazko G, Giddings TH Jr, Morgan G, Mushegian A, Winey M (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jodoin JN, Shboul M, Sitaram P, Zein-Sabatto H, Reversade B, Lee E, Lee LA (2012) Human Asunder promotes dynein recruitment and centrosomal tethering to the nucleus at mitotic entry. Mol Biol Cell 23:4713–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630

    Article  CAS  PubMed  Google Scholar 

  • Katsumata K, Hirayasu A, Miyoshi J, Nishi E, Ichikawa K, Tateho K, Wakuda A, Matsuhara H, Yamamoto A (2016) A Taz1- and microtubule-dependent regulatory relationship between telomere and centromere positions in bouquet formation secures proper meiotic divisions. PLoS Genet 12:e1006304

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Meyer R, Chuong H, Dawson DS (2013) Dual mechanisms prevent premature chromosome segregation during meiosis. Genes Dev 27:2139–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klutstein M, Fennell A, Fernandez-Alvarez A, Cooper JP (2015) The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 17:458–469

    Article  CAS  PubMed  Google Scholar 

  • Koszul R, Kleckner N (2009) Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol 19:716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S (2008) Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:1188–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacQueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF (2005) Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123:1037–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    Article  CAS  PubMed  Google Scholar 

  • Meister P, Mango SE, Gasser SM (2011) Locking the genome: nuclear organization and cell fate. Curr Opin Genet Dev 21:167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejat A, Misteli T (2010) LINC complexes in health and disease. Nucleus Austin 1:40–52

    Article  Google Scholar 

  • Meyer RE, Kim S, Obeso D, Straight PD, Winey M, Dawson DS (2013) Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339:1071–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O (2004) Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genomics 270:449–461

    Article  CAS  PubMed  Google Scholar 

  • Miller MP, Unal E, Brar GA, Amon A (2012) Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions. Elife 1:e00117

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MP, Amon A, Unal E (2013) Meiosis I: when chromosomes undergo extreme makeover. Curr Opin Cell Biol 25:687–696

    Article  CAS  PubMed  Google Scholar 

  • Mine-Hattab J, Rothstein R (2013) DNA in motion during double-strand break repair. Trends Cell Biol 23:529–536

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  • Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro K, Han M, Watanabe Y (2012) A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Biol 198:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392:825–828

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Terazawa Y, Nakayama T, Hirata A, Makio T, Endo T (2003) Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion. J Biol Chem 278:9938–9943

    Article  CAS  PubMed  Google Scholar 

  • Niwa O, Shimanuki M, Miki F (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J 19:3831–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23:912–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789

    Article  CAS  PubMed  Google Scholar 

  • Parra MT, Gomez R, Viera A, Llano E, Pendas AM, Rufas JS, Suja JA (2009) Sequential assembly of centromeric proteins in male mouse meiosis. PLoS Genet 5:e1000417

    Article  PubMed  PubMed Central  Google Scholar 

  • Penkner AM, Fridkin A, Gloggnitzer J, Baudrimont A, Machacek T, Woglar A, Csaszar E, Pasierbek P, Ammerer G, Gruenbaum Y, Jantsch V (2009) Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 139:920–933

    Article  CAS  PubMed  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    Article  CAS  PubMed  Google Scholar 

  • Phillips CM, Wong C, Bhalla N, Carlton PM, Weiser P, Meneely PM, Dernburg AF (2005) HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123:1051–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razafsky D, Hodzic D (2009) Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J Cell Biol 186:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS (1999) Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 146:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha PP, Skok JA (2013) The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr Opin Cell Biol 25:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621

    Article  CAS  PubMed  Google Scholar 

  • Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107

    Article  CAS  PubMed  Google Scholar 

  • Scheffler K, Minnes R, Fraisier V, Paoletti A, Tran PT (2015) Microtubule minus end motors kinesin-14 and dynein drive nuclear congression in parallel pathways. J Cell Biol 209:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627

    Article  CAS  PubMed  Google Scholar 

  • Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM (2009) Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23:928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya H, Morimoto A, Watanabe Y (2014) The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 10:e1004821

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimanuki M, Miki F, Ding DQ, Chikashige Y, Hiraoka Y, Horio T, Niwa O (1997) A novel fission yeast gene, kms1+, is required for the formation of meiotic prophase-specific nuclear architecture. Mol Gen Genet 254:238–249

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sitaram P, Anderson MA, Jodoin JN, Lee E, Lee LA (2012) Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 139:2945–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608

    Article  CAS  PubMed  Google Scholar 

  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita K, Cooper JP (2007) The telomere bouquet controls the meiotic spindle. Cell 130:113–126

    Article  CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troxell CL, Sweezy MA, West RR, Reed KD, Carson BD, Pidoux AL, Cande WZ, McIntosh JR (2001) pkl1 + and klp2 +: two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 12:3476–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgay Y, Champion L, Balazs C, Held M, Toso A, Gerlich DW, Meraldi P, Kutay U (2014) SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J Cell Biol 204:1099–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuzon CT, Borgstrom B, Weilguny D, Egel R, Cooper JP, Nielsen O (2004) The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis. J Cell Biol 165:759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walde S, King MC (2014) The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. J Cell Sci 127:3625–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynne DJ, Rog O, Carlton PM, Dernburg AF (2012) Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis. J Cell Biol 196:47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A (2014) Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 71:2119–2134

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Hiraoka Y (2001) How do meiotic chromosomes meet their homologous partners? Lessons from fission yeast. BioEssays 23:526–533

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Hiraoka Y (2003) Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J 22:2284–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Imai Y, Watanabe Y (1997) Mating and sporulation in Schizosaccharomyces pombe. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1037–1106

    Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145:1233–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Tsutsumi C, Kojima H, Oiwa K, Hiraoka Y (2001) Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. Mol Biol Cell 12:3933–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto TG, Chikashige Y, Ozoe F, Kawamukai M, Hiraoka Y (2004) Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast. J Cell Sci 117:3875–3886

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Katsuyama S, Tateho K, Nakamura H, Miyoshi J, Ohba T, Matsuhara H, Miki F, Okazaki K, Haraguchi T, Niwa O, Hiraoka Y, Yamamoto A (2013) Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J Cell Biol 200:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Akira Shinohara for reagents used for this study, and Takashi Ushimaru and Motoaki Hiraoka for critical reading of the manuscript and helpful comments. This work was supported by JSPS KAKENHI Grant Number 16K07248 (Grant-in-Aid for Scientific Research C) and performed under the Cooperative Research Program of the Institute for Protein Research, Osaka University (CR-13/14/15/16-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumu Yamamoto.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsumata, K., Nishi, E., Afrin, S. et al. Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis. Curr Genet 63, 1037–1052 (2017). https://doi.org/10.1007/s00294-017-0699-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0699-2

Keywords

Navigation