Skip to main content

Advertisement

Log in

Development of a local drug delivery system for promoting the regeneration of infective bone defects: composite films with controlled properties

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Due to inadequate drug tissue penetration and low blood supply to the bone, the systemic delivery of medications during infection and inflammation of bone tissues frequently fails to heal abnormalities or lesions in bone tissues. In the quest for local delivery of antibiotics to treat the infection and bone-grafting particles to stimulate bone growth and regeneration, a series of composite films containing gelatin (G), chitosan (CH), carbonated hydroxyapatite (CHA), and various amounts of tetraethyl orthosilicate (TEOS) crosslinker were synthesized. The synthesis resulted in 4 (four) different composite films having a mass ratio of 0.3/0.3/0.5/x, where x = 0, 1.87, 3.73, and 5.60 for G/CH/CHA, G/CH/CHA/TEOS(2), G/CH/CHA/TEOS(4), and G/CH/CHA/TEOS(6), respectively. The composite films were characterized using SEM for morphology, SAA for specific surface area and pore volume, and FTIR and XRD for functional groups and crystal phase, respectively. Furthermore, tensile strength, water absorption capacity, polymer matrix degradation, Ca2+ release profile, drug loading capacity, drug unloading (release) profile, and drug release kinetics were determined to gain insights into the critical design parameters for preparing this drug carrier. A commercial film, Dentium™ (collagen-based), was included in the water absorption, drug loading capacity, drug release profile, and degradation tests. The biological performance of the film was evaluated from protein absorption and MC3T3I1 cell cytotoxicity. It was found that G/CH/CHA/TEOS(2) exhibited the lowest total pore volume, the highest tensile strength and protein absorption, similar water absorption and drug loading capacity, the lowest drug release rate, the lowest Ca2+ release rate, the lowest degradation rate, and cytocompatibility when compared to the other synthesized composite films. According to empirical mathematical modeling, the Higuchi and Korsmeyer-Peppas models best described the drug unloading (release) process for G/CH/CHA and G/CH/CHA/TEOS films through a diffusion process. When Dentium™ was included in the tests, Dentium™ exhibited the lowest water absorption, the lowest drug loading capacity, the highest drug release rate, and the lowest film degradation rate compared to all studied films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Subhapradha N, Abudhahir M, Aathira A, Srinivasan N, Moorthi A (2018) Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. Int J Biol Macromol 110:65–73

    Article  CAS  PubMed  Google Scholar 

  2. Parvatikar PP, Patil S, Khaparkhuntikar K, Patil S, Singh PK, Sahana R et al (2023) Artificial intelligence: machine learning approach for screening large database and drug discovery. Antiviral Res 220:105740

    Article  CAS  PubMed  Google Scholar 

  3. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Akamanchi KG, Inamadar AC et al (2020) Functionally tailored electro-sensitive poly(acrylamide)-g-pectin copolymer hydrogel for transdermal drug delivery application: synthesis, characterization, in-vitro and ex-vivo evaluation. Drug Deliv Lett 10(3):185–196

    CAS  Google Scholar 

  4. Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M (2020) Bone diseases: current approach and future perspectives in drug delivery systems for bone targeted therapeutics. Nanomaterials [Internet] 10(5):875

    Article  CAS  PubMed  Google Scholar 

  5. Lavik EB, Kuppermann BD, Humayun MS (2013) Chapter 38 - drug delivery A2 - Ryan, Stephen J. In: Sadda SR, Hinton DR, Schachat AP, Wilkinson CP, Wiedemann P (eds) Retina, 5th edn. W.B. Saunders, London, pp 734–745

    Chapter  Google Scholar 

  6. Santos LF, Correia IJ, Silva AS, Mano JF (2018) Biomaterials for drug delivery patches. Eur J Pharm Sci 118:49–66

    Article  CAS  PubMed  Google Scholar 

  7. Rose BJ, Pacelli S, Haj JA, Dua SH, Hopkinson A, White JL et al (2014) Gelatin-based materials in ocular tissue engineering. Materials 7(4):3106–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunarso S, Sutarno S, Tsuru K, Ana ID, Ishikawa K (2011) Effect of crosslinking to the mechanical property of apatite gelatin hybrid for bone substitution purposes. Indones J Chem 11(3):267–272

    Article  Google Scholar 

  9. Liang HÄ, Chang WÄ, Liang HÄ, Lee MÄ, Sung HÄ (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water Äêsoluble carbodiimide. J Appl Polym Sci 91(6):4017–4026

    Article  CAS  Google Scholar 

  10. Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50

    Article  CAS  PubMed  Google Scholar 

  11. Choi YR, Kim EH, Lim S, Choi YS (2018) Efficient preparation of a permanent chitosan/gelatin hydrogel using an acid-tolerant tyrosinase. Biochem Eng J 129:50–56

    Article  CAS  Google Scholar 

  12. An J, Gou Y, Yang C, Hu F, Wang C (2013) Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater Sci Eng, C 33(5):2827–2837

    Article  CAS  Google Scholar 

  13. Santos JP, Esquerdo VM, Moura CM, Pinto LAA (2018) Crosslinking agents effect on gelatins from carp and tilapia skins and in their biopolymeric films. Colloids Surf, A: Physicochem Eng Asp 539:184–191

    Article  CAS  Google Scholar 

  14. Piluso S, Vukicevic R, Nochel U, Braune S, Lendlein A, Neffe AT (2018) Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation. Eur Polym J 100:77–85

    Article  CAS  Google Scholar 

  15. Garcia-Astrain C, Pena-Rodriguez C, Retegi A, Eceiza A, Corcuera MA, Gabilondo N (2015) Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Mater Lett 160:142–145

    Article  CAS  Google Scholar 

  16. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ardhani R, Ana ID, Tabata Y (2020) Gelatin hydrogel membrane containing carbonate hydroxyapatite for nerve regeneration scaffold. J Biomed Mater Res, Part A 108(12):2491–2503

    Article  CAS  Google Scholar 

  18. Zupancic S, Baumgartner S, Lavriç Z, Petelin M, Kristl J (2015) Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. J Drug Deliv Sci Technol 30:408–416

    Article  CAS  Google Scholar 

  19. Gjoseva S, Geskovski N, Sazdovska SD, Popeski-Dimovski R, Petruševski G, Mladenovska K et al (2018) Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 186:260–272

    Article  CAS  PubMed  Google Scholar 

  20. Medlicott NJ, Rathbone MJ, Tucker IG, Holborow DW (1994) Delivery systems for the administration of drugs to the periodontal pocket. Adv Drug Deliv Rev 13(1):181–203

    Article  CAS  Google Scholar 

  21. Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R (2000) Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm 50(1):83–99

    Article  CAS  PubMed  Google Scholar 

  22. Ardhani R, Setyaningsih S, Hafiyyah OA, Ana ID (2016) Preparation of carbonated apatite membrane as metronidazole delivery system for periodontal application. Key Eng Mater 696:250–258

    Article  Google Scholar 

  23. Ardhani R, Suraya T, Wulanjati MP, Ana ID, Rühe J, Pidhatika B (2022) Photoreactive polymer and C, H-insertion reaction to tailor the properties of CHA/gelatin-based scaffold. Int J Polym Anal Charact 27(5):326–345

    Article  CAS  Google Scholar 

  24. Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K et al (2005) A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26(36):7564–7571

    Article  CAS  PubMed  Google Scholar 

  25. Liao S, Wei W, Yokoyama A, Yuhue Z, Watari F, Ramakrishna S et al (2010) In vitro and in vivo behaviors of the three-layered nanocarbonated hydroxyapatite/collagen/PLGA composite. J Bioact Compat Polym 25(2):154–168

    Article  CAS  Google Scholar 

  26. Baek Y-J, Kim J-H, Song J-M, Yoon S-Y, Kim H-S, Shin S-H (2016) Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model. Maxillofac Plast Reconstr Surg 38(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tu Y, Chen C, Li Y, Hou Y, Huang M, Zhang L (2017) Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed Mater Eng 28(3):223–233

    CAS  PubMed  Google Scholar 

  28. Bang LT, Long BD, Othman R (2014) Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations. Sci World J 2014:969876

    Article  CAS  Google Scholar 

  29. Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF (2019) Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis 81:128–136

    Article  CAS  PubMed  Google Scholar 

  30. Mahmudi M, Pidhatika B, Suyanta S, Nuryono N (2022) Modification of gelatin/carbonated hydroxyapatite membrane with chitosan to improve the tensile strength. Rasayan J Chem 15(2):954–959

    Article  CAS  Google Scholar 

  31. Mahmudi M, Nuryono N, Pidhatika B, Suyanta S (2022) Synthesis of bioactive membranes for guided tissue regeneration (GTR): a comparative study of the effect silane-based cross-linker. Rasayan J Chem 15(1):102–107

    Article  CAS  Google Scholar 

  32. Bruschi ML (2015) 5-Mathematical models of drug release. In: Bruschi ML (ed) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Cambridge, pp 63–86

    Google Scholar 

  33. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  34. Divyashri G, Krishna Murthy TP, Ragavan KV, Sumukh GM, Sudha LS, Nishka S et al (2023) Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 9(9):e20212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chollet M, Horgnies M (2011) Analyses of the surfaces of concrete by Raman and FT-IR spectroscopies: comparative study of hardened samples after demoulding and after organic post-treatment. Surf Interface Anal 43(3):714–725

    Article  CAS  Google Scholar 

  36. Mahatmanti FW, Rengga WDP, Kusumastuti E, Nuryono N (2018) Dynamic adsorption of mixtures of rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane. In: IOP conference series: materials science and engineering, vol. 349(1), pp 012022

  37. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem 5(7):340–344

    Google Scholar 

  38. Wang S, Wen S, Shen M, Guo R, Cao X, Wang J et al (2011) Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int J Nanomed 6:3449–3459

    CAS  Google Scholar 

  39. Kumar G, Chaudhary K, Mogha NK, Kant A, Masram DT (2021) Extended release of metronidazole drug using chitosan/graphene oxide bionanocomposite beads as the drug carrier. ACS Omega 6(31):20433–20444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiadeh SZH, Ghaee A, Mashak A, Mohammadnejad J (2017) Preparation of chitosan–silica/PCL composite membrane as wound dressing with enhanced cell attachment. Polym Adv Technol 28(11):1396–1408

    Article  Google Scholar 

  41. Michelot A, Sarda S, Audin C, Deydier E, Manoury E, Poli R et al (2015) Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction. J Mater Sci 50(17):5746–5757

    Article  CAS  Google Scholar 

  42. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D (2015) Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res Lett 10(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  43. Myhal AV, Golovchenko OS, Krutskikh TV, Gubar SM, Georgiyants VA (2016) IR-spectroscopy research into the structure of products of interaction between metronidazole and metal salts. Der Pharma Chemica 8(19):148–154

    CAS  Google Scholar 

  44. Peña C, de la Caba K, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Biores Technol 101(17):6836–6842

    Article  Google Scholar 

  45. Das MP, Suguna PR, Prasad K, Vijaylakshmi JV, Renuka M (2017) Extraction and characterization of gelatin: a functional biopolymer. Int J Pharm Pharm Sci 9(9):239–242

    Article  CAS  Google Scholar 

  46. Ali MEA, Aboelfadl MMS, Selim AM, Khalil HF, Elkady GM (2018) Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Sep Sci Technol 53(18):2870–2881

    Article  CAS  Google Scholar 

  47. Kwon K-A, Juhasz JA, Brooks RA, Best SM (2020) Bioactive conformable hydrogel-carbonated hydroxyapatite nanocomposite coatings on Ti-6Al-4V substrates. Mater Technol 35(11–12):727–733

    Article  CAS  Google Scholar 

  48. Shweta K, Jha H (2016) Synthesis and characterization of crystalline carboxymethylated lignin–TEOS nanocomposites for metal adsorption and antibacterial activity. Bioresources and Bioprocessing 3(1):31

    Article  Google Scholar 

  49. Stolarski M, Walendziewski J, Steininger M, Barbara P (1999) Synthesis and characteristic of silica aerogels. Appl Catal A 177(2):139–148

    Article  CAS  Google Scholar 

  50. Czarnobaj K (2011) Sol–gel-processed silica/polydimethylsiloxane/calcium xerogels as polymeric matrices for Metronidazole delivery system. Polym Bull 66(2):223–237

    Article  CAS  Google Scholar 

  51. Mzoughi J, Vandamme T, Luchnikov V (2021) Biphasic drug release from rolled-up gelatin capsules with a cylindrical cavity. Pharmaceutics [Internet] 13(12):2040

    Article  CAS  PubMed  Google Scholar 

  52. Nasseh N, Barikbin B, Taghavi L, Nasseri MA (2019) Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies). Compos B Eng 159:146–156

    Article  CAS  Google Scholar 

  53. Saravanan M, Sri Nataraj K, Ganesh KS (2003) Hydroxypropyl methylcellulose based cephalexin extended release tablets: influence of tablet formulation, hardness and storage on in vitro release kinetics. Chem Pharm Bull 51(8):978–983

    Article  CAS  Google Scholar 

  54. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  55. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seabold S, Perktold J (eds.) (2010) Statsmodels: econometric and statistical modeling with python. In: The 9th python in science conference (Scipy 2010)

  57. López-García J, Lehocký M, Humpolíček P, Sáha P (2014) HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater 5(2):43–57

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors express gratitude for the support to our research from the Directorate of Research, Technology, and Community Services, Directorate General of Higher Education, Research, and Technology, Ministry of Education, Culture, Research, and Technology Republic of Indonesia by the Fundamental of Basic Research Grant No. 122/E5/PG/02.00PL/2023; 3135/UN1/DITLIT/Dit-Lit/PT.01.03/2023, RTA Universitas Gadjah Mada for 2338/UN1/DITLIT/Dit-Lit/PT.01.00/2023, as well as LPDP and BRIN Indonesia for B-3842/II.7.5/FR.06.00/11/2023; B-3855/III.10/FR.06.00/11/2023 grants.

Funding

Directorate of Research, Technology, and Community Services, Directorate General of Higher Education, Research, and Technology, Ministry of Education, Culture, Research, and Technology Republic of Indonesia, 122/E5/PG/02.00PL/2023, Retno Ardhani, 3135/UN1/DITLIT/Dit-Lit/PT.01.03/2023, Retno Ardhani, Universitas Gadjah Mada, 2338/UN1/DITLIT/Dit-Lit/PT.01.00/2023, Nuryono Nuryono, LPDP and BRIN Indonesia, B-3842/II.7.5/FR.06.00/11/2023, Bidhari Pidhatika, B-3855/III.10/FR.06.00/11/2023, Bidhari Pidhatika.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Retno Ardhani or Nuryono Nuryono.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1711 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmudi, M., Ardhani, R., Pidhatika, B. et al. Development of a local drug delivery system for promoting the regeneration of infective bone defects: composite films with controlled properties. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05243-8

Keywords

Navigation