Skip to main content

Advertisement

Log in

Erlotinib-entrapped gellan gum/carboxymethyl fenugreek seed mucilage-based thermo/pH-sensitive matrices

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carboxymethyl fenugreek seed mucilage-grafted poly-N-isopropylacrylamide/montmorillonite [CFSM-g-PNIPA/MMT] nanocomposites (NCs) were dually crosslinked with gellan gum (GG) to afford interpenetrating polymer network (IPN) matrices for effective delivery of erlotinib HCl (ERL) to the triple-negative breast cancer (TNBC) cells. The IPN matrices with different reinforcing clay (MMT) contents (0–20%) demonstrated comparable size (1.64–1.80 mm) and acceptable drug loading capacity (DEE, 47.97–89.35%). The infrared, thermal and X-ray analyses implied the compatibility between drug and matrix constituents, and the SEM studies conferred the spherical morphology of the IPN matrices. Moreover, these hydrogel matrices portrayed temperature-responsive swelling profiles and their molar masses between crosslinks \(\left( {\bar{M}_{{\text{c}}} } \right)\) were increased with temperature. Among different matrices, the composites containing 20% MMT (F-3) revealed the sustained drug release profiles, which were best fitted to the Higuchi model with an anomalous transport-driven mechanism. These matrices (F-3) also exhibited pH-dependent swelling and drug release patterns. Furthermore, these matrices evidenced a slower biodegradability as compared to the reference composites (F-1,0% MMT). The mucin adsorption ability of matrices followed the Freundlich isotherm. The matrices (F-3) also displayed enhanced anti-proliferative and apoptosis-inducing potentials on TNBC cells relative to pure ERL. Thus, the GG/CFSM-based IPN matrices could be employed as efficient drug delivery vehicles for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Nayak AK, Ansari MT, Sami F, Bera H, Hasnain MS (2019) Cashew gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, London, pp 263–283

    Chapter  Google Scholar 

  2. Nayak AK, Bera H (2019) In situ polysaccharide-based gels for topical drug delivery applications. In: Maiti S, Jana S (eds) Polysaccharide carriers for drug delivery. Woodhead Publishing, Duxford, pp 615–638

    Chapter  Google Scholar 

  3. Bera H, Abbasi YF, Gajbhiye V, Liew KF, Kumar P, Tambe P et al (2020) Carboxymethyl fenugreek galactomannan-g-poly(N-isopropylacrylamide-co-N, N′-methylene-bis-acrylamide)-clay based pH/temperature-responsive nanocomposites as drug-carriers. Mater Sci Eng C 110:110628. https://doi.org/10.1016/j.msec.2020.110628

    Article  CAS  Google Scholar 

  4. Bera H, Abbasi YF, Lee Ping L, Marbaniang D, Mazumder B, Kumar P et al (2020) Erlotinib-loaded carboxymethyl temarind gum semi-interpenetrating nanocomposites. Carbohydr Polym 230:115664. https://doi.org/10.1016/j.carbpol.2019.115664

    Article  CAS  PubMed  Google Scholar 

  5. Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 96(1):349–357. https://doi.org/10.1016/j.carbpol.2013.03.088

    Article  CAS  PubMed  Google Scholar 

  6. Nayak AK, Pal D, Santra K (2014) Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr Polym 101:220–230. https://doi.org/10.1016/j.carbpol.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  7. Bera H, Abbasi YF, Yoke FF, Seng PM, Kakoti BB, Ahmmed SKM, Bhatnagar P (2019) Ziprasidone-loaded arabic gum modified montmorillonite-tailor-made pectin based gastroretentive composites. Int J Biol Macromol 129:552–563. https://doi.org/10.1016/j.ijbiomac.2019.01.171

    Article  CAS  PubMed  Google Scholar 

  8. del Real A, Wallander D, Maciel A, Cedillo G, Loza H (2015) Graft copolymerization of ethyl acrylate onto tamarind kernel powder, and evaluation of its biodegradability. Carbohydr Polym 117:11–18. https://doi.org/10.1016/j.carbpol.2014.09.044

    Article  CAS  PubMed  Google Scholar 

  9. Nagaraja K, Rao KM, Rao KSVK, Han SS (2022) Dual responsive tamarind gum-co-poly(N-isopropyl acrylamide-co-ethylene glycol vinyl ether) hydrogel: a promising device for colon specific anti-cancer drug delivery. Colloids Surf A Physicochem Eng 641:128456. https://doi.org/10.1016/j.colsurfa.2022.128456

    Article  CAS  Google Scholar 

  10. Ma J, Zhang L, Fan B, Xu Y, Liang B (2008) A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties. J Polym Sci B Polym Phys 46(15):1546–1555. https://doi.org/10.1002/polb.21490

    Article  CAS  Google Scholar 

  11. Wilpiszewska K, Antosik AK, Spychaj T (2015) Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohydr Polym 128:82–89. https://doi.org/10.1016/j.carbpol.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  12. Bera H, Abbasi YF, Thakur A (2023) Curdlan/clay nanocomposite-reinforced alginate beads as drug carriers. J Polym Environ. https://doi.org/10.1007/s10924-023-03036-0

    Article  Google Scholar 

  13. Ramezanian S, Moghaddas J, Roghani-Mamaqani H, Rezamand A (2023) Dual pH- and temperature-responsive poly(dimethylaminoethyl methacrylate)-coated mesoporous silica nanoparticles as a smart drug delivery system. Sci Rep 13(1):20194. https://doi.org/10.1038/s41598-023-47026-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P et al (2021) Chemosensitivity assessments of curdlan-doped smart nanocomposites containing erlotinib HCl. Int J Biol Macromol 181:169–179. https://doi.org/10.1016/j.ijbiomac.2021.03.152

    Article  CAS  PubMed  Google Scholar 

  15. Ghorbani M, Nezhad-Mokhtari P, Mahmoodzadeh F (2021) Incorporation of oxidized pectin to reinforce collagen/konjac glucomannan hydrogels designed for tissue engineering applications. Macromol Res 29(4):289–296

    Article  CAS  Google Scholar 

  16. Erfani A, Flynn NH, Aichele CP, Ramsey JD (2020) Encapsulation and delivery of protein from within poly (sulfobetaine) hydrogel beads. J Appl Polym Sci 137(40):49550. https://doi.org/10.1002/app.49550

    Article  CAS  Google Scholar 

  17. Wright L, Joyce P, Barnes TJ, Prestidge CA (2021) Mimicking the gastrointestinal mucus barrier: laboratory-based approaches to facilitate an enhanced understanding of mucus permeation. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00814

    Article  PubMed  Google Scholar 

  18. Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H et al (2014) Biodegradable gelatin–ciprofloxacin–montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B 122:175–183. https://doi.org/10.1016/j.colsurfb.2014.06.051

    Article  CAS  Google Scholar 

  19. Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94(1):57–63. https://doi.org/10.1016/0022-1759(86)90215-2

    Article  CAS  PubMed  Google Scholar 

  20. Krey JF, Drummond M, Foster S, Porsov E, Vijayakumar S, Choi D et al (2016) Annexin A5 is the most abundant membrane-associated protein in stereocilia but is dispensable for hair-bundle development and function. Sci Rep 6(1):27221. https://doi.org/10.1038/srep27221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakka VP, Zhou T (2020) Carboxymethylation of polysaccharides: synthesis and bioactivities. Int J Biol Macromol 165:2425–2431. https://doi.org/10.1016/j.ijbiomac.2020.10.178

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly S, Maity T, Mondal S, Das P, Das NC (2017) Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol 95:185–198. https://doi.org/10.1016/j.ijbiomac.2016.11.055

    Article  CAS  PubMed  Google Scholar 

  23. Guo H, de Magalhaes GM, Ducouret G, Hourdet D (2018) Cold and hot gelling of alginate-graft-PNIPAM: a schizophrenic behavior induced by potassium salts. Biomacromol 19(2):576–587. https://doi.org/10.1021/acs.biomac.7b01667

    Article  CAS  Google Scholar 

  24. Wu C, Peng S, Wen C, Wang X, Fan L, Deng R, Pang J (2012) Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydr Polym 89(2):497–503. https://doi.org/10.1016/j.carbpol.2012.03.034

    Article  CAS  PubMed  Google Scholar 

  25. Huang X, Ge M, Wang H, Liang H, Meng N, Zhou N (2022) Functional modification of polydimethylsiloxane nanocomposite with silver nanoparticles-based montmorillonite for antibacterial applications. Colloids Surf A Physicochem Eng 642:128666. https://doi.org/10.1016/j.colsurfa.2022.128666

    Article  CAS  Google Scholar 

  26. Yang F, Xia S, Tan C, Zhang X (2013) Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol 237(4):467–479. https://doi.org/10.1007/s00217-013-2021-y

    Article  CAS  Google Scholar 

  27. Bulut E (2021) Development and optimization of Fe3+-crosslinked sodium alginate-methylcellulose semi-interpenetrating polymer network beads for controlled release of ibuprofen. Int J Biol Macromol 168:823–833. https://doi.org/10.1016/j.ijbiomac.2020.11.147

    Article  CAS  PubMed  Google Scholar 

  28. Pongjanyakul T, Rongthong T (2010) Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug–clay intercalated complexes as microreservoirs. Carbohydr Polym 81(2):409–419. https://doi.org/10.1016/j.carbpol.2010.02.038

    Article  CAS  Google Scholar 

  29. Gomes RF, Lima LRM, Feitosa JPA, Paula HCB, de Paula RCM (2020) Influence of galactomannan molar mass on particle size galactomannan-grafted-poly-N-isopropylacrylamide copolymers. Int J Biol Macromol 156:446–453. https://doi.org/10.1016/j.ijbiomac.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  30. Rampaka R, Ommi K, Chella N (2021) Role of solid lipid nanoparticles as drug delivery vehicles on the pharmacokinetic variability of erlotinib HCl. J Drug Deliv Sci Technol 66:102886. https://doi.org/10.1016/j.jddst.2021.102886

    Article  CAS  Google Scholar 

  31. Gontijo SML, Guimarães PPG, Viana CTR, Denadai ÂML, Gomes ADM, Campos PP et al (2015) Erlotinib/hydroxypropyl-β-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J Incl Phenom Macrocycl Chem 83(3):267–279. https://doi.org/10.1007/s10847-015-0562-3

    Article  CAS  Google Scholar 

  32. Yadav H, Agrawal R, Panday A, Patel J, Maiti S (2022) Polysaccharide-silicate composite hydrogels: review on synthesis and drug delivery credentials. J Drug Deliv Sci Technol 74:103573. https://doi.org/10.1016/j.jddst.2022.103573

    Article  CAS  Google Scholar 

  33. Budha NR, Frymoyer A, Smelick GS, Jin JY, Yago MR, Dresser MJ et al (2012) Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharmacol Ther 92(2):203–213. https://doi.org/10.1038/clpt.2012.73

    Article  CAS  PubMed  Google Scholar 

  34. Park JH, Shin HJ, Kim MH, Kim JS, Kang N, Lee JY et al (2016) Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J Pharm Investig 46(4):363–375. https://doi.org/10.1007/s40005-016-0258-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh B, Sharma V, Chauhan D (2010) Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chem Eng Res Des 88(8):997–1012. https://doi.org/10.1016/j.cherd.2010.01.017

    Article  CAS  Google Scholar 

  36. Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M (2017) Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 253:46–63. https://doi.org/10.1016/j.jconrel.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  37. Fernando IPS, Lee W, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. J Chem Eng 391:123823. https://doi.org/10.1016/j.cej.2019.123823

    Article  CAS  Google Scholar 

  38. Pavani P, Kumar K, Rani A, Venkatesu P, Lee M-J (2021) The influence of sodium phosphate buffer on the stability of various proteins: insights into protein-buffer interactions. J Mol Liq 331:115753. https://doi.org/10.1016/j.molliq.2021.115753

    Article  CAS  Google Scholar 

  39. Wang D, Lv R, Ma X, Zou M, Wang W, Yan L et al (2018) Lysozyme immobilization on the calcium alginate film under sonication: development of an antimicrobial film. Food Hydrocoll 83:1–8. https://doi.org/10.1016/j.foodhyd.2018.04.021

    Article  CAS  Google Scholar 

  40. Sosnik A, Das Neves J, Sarmento B (2014) Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci 39(12):2030–2075. https://doi.org/10.1016/j.progpolymsci.2014.07.010

    Article  CAS  Google Scholar 

  41. García-Guzmán P, Medina-Torres L, Calderas F, Bernad-Bernad MJ, Gracia-Mora J, Marcos X et al (2019) Rheological mucoadhesion and cytotoxicity of montmorillonite clay mineral/hybrid microparticles biocomposite. Appl Clay Sci 180:105202. https://doi.org/10.1016/j.clay.2019.105202

    Article  CAS  Google Scholar 

  42. Sorasitthiyanukarn FN, Muangnoi C, Thaweesest W, Rojsitthisak P, Rojsitthisak P (2019) Enhanced cytotoxic, antioxidant and anti-inflammatory activities of curcumin diethyl disuccinate using chitosan-tripolyphosphate nanoparticles. J Drug Deliv Sci Technol 53:101118. https://doi.org/10.1016/j.jddst.2019.06.015

    Article  CAS  Google Scholar 

  43. Yamasaki F, Zhang D, Bartholomeusz C, Sudo T, Hortobagyi GN, Kurisu K, Ueno NT (2007) Sensitivity of breast cancer cells to erlotinib depends on cyclin-dependent kinase 2 activity. Mol Cancer Ther 6(8):2168–2177. https://doi.org/10.1158/1535-7163.Mct-06-0514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Upadhyay M, Adena SKR, Vardhan H, Yadav SK, Mishra B (2019) Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating capecitabine: improved pharmacokinetics, cytotoxicity & in vivo antitumor activity. Mater Sci Eng C 104:109958. https://doi.org/10.1016/j.msec.2019.109958

    Article  CAS  Google Scholar 

  45. Vaidya B, Parvathaneni V, Kulkarni NS, Shukla SK, Damon JK, Sarode A et al (2019) Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int J Biol Macromol 122:338–347. https://doi.org/10.1016/j.ijbiomac.2018.10.181

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work was supported by the fellowship of China Postdoctoral Science Foundation (grant no. 2021MD703857; grant recipient, Dr. Hriday Bera).

Author information

Authors and Affiliations

Authors

Contributions

YFA contributed to preparation and characterization of drug-loaded formulations, writing, reviewing and editing; HB contributed to conceptualization, characterization of drug-loaded formulations, supervision, writing, reviewing and editing; AT involved in cell culture experiments of various scaffolds; YFA and HB contributed equally.

Corresponding author

Correspondence to Hriday Bera.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1980 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, Y.F., Bera, H. & Thakur, A. Erlotinib-entrapped gellan gum/carboxymethyl fenugreek seed mucilage-based thermo/pH-sensitive matrices. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05240-x

Keywords

Navigation