Skip to main content
Log in

Green synthesis of molecularly tailored chitosan-based gold and silver nanocomposite and their application in selective recognition of ciprofloxacin

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, a study on the chitosan-amalgamated gold nanoparticles (AuNPs)- and silver nanoparticles (AgNPs)-based molecularly imprinted polymer (MIP) film and its application to recognize/remove ciprofloxacin (CIP) antibiotic in real samples is reported. The pomegranate peel at pH 8 is used for the reduction of silver nitrate solution to form AgNPs, whereas chitosan itself is used for the reduction of gold chloride solution to form AuNPs. The size of the synthesized AgNPs and AuNPs is in the range 30–45 and 45–50 nm, respectively, which is determined by dynamic light scattering (DLS). Further, the synthesized nanoparticles (NPs) are used to prepare MIP film. The molecularly tailored chitosan-based nanocomposite is used as a functional biopolymer to enhance the adsorption capacity and surface area of MIP film. The properties of synthesized chitosan-based AuNPs- and chitosan-based AgNPs-MIP composite (Chi@AuMIP and Chi@AgMIP) exhibited much higher adsorption capacity than non-imprinted polymer (NIP). The results revealed that the theoretical equilibrium constant (KL) and maximum adsorption capacity (Qmax) found by the Langmuir model are 12.2 and 20.48 mg g−1 for Chi@AuMIP and 18.31 and 34.13 mg g−1 for Chi@AgMIP, respectively. The recovery percentage of CIP for Chi@AuMIP and Chi@AgMIP is 98 and 80%, respectively. The selectivity experiment data suggest maximum adsorption capacity for targeted molecule (CIP) by the MIP as compared to analogs of template molecule. MIP showed relative potential selectivity and good recovery percentage for CIP in real samples as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Vidyavathi M, Srividya G (2018) A review on ciprofloxacin: dosage form perspective. Int J Appl Pharm 10(4):6–10

    Article  CAS  Google Scholar 

  2. Rahman MS, Hassan MM, Chowdhury S (2021) Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 7(8):e07739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garces A, Zerzanova A, Kucera R, Barron D, Barbosa J (2006) Determination of a series of quinolones in pig plasma using solid-phase extraction and liquid chromatography coupled with mass spectrometric detection—application to pharmacokinetic studies. J Chromatogr A 1137(1):22–29

    Article  CAS  PubMed  Google Scholar 

  4. Liu ST, Yan HY, Wang MY, Wang LH (2013) Water-compatible molecularly imprinted microspheres in pipette tip solid-phase extraction for simultaneous determination of five fluoroquinolones in eggs. J Agric Food Chem 61:11974–11980

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Zhang X, Huang Y (2017) Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater 321:711–719

    Article  CAS  PubMed  Google Scholar 

  6. Pawar MK, Tayade KC, Sahoo SK, Mahulikar PP, Kuwar AS, Chaudhari BL (2016) Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin. Biosens Bioelectron 81:274–279

    Article  CAS  PubMed  Google Scholar 

  7. Doorslaer XV, Dewulf J, Langenhove HV, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501:250–269

    Article  PubMed  Google Scholar 

  8. Banin E, Hughes D, Kuipers OP (2017) Editorial: bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microb Rev 41(3):450–452

    Article  CAS  Google Scholar 

  9. Duran N, Duran M, Jesus MB, Seabra AB, Favaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12(3):789–799

    Article  CAS  Google Scholar 

  10. Wise R, Andrews JM, Edwards L (1983) In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother 23:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sajini T, Mathew B (2021) A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open 4:100072

    Article  Google Scholar 

  12. Beltran A, Borrull F, Marce RM, Cormack PAG (2010) Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal Chem 29(11):1363–1375

    Article  CAS  Google Scholar 

  13. Turiel E, Martin-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Chim Acta 668:87–99

    Article  CAS  Google Scholar 

  14. Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Anal Chim Acta 925:61–69

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  Google Scholar 

  16. Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stephan O (2010) Chemical growth and photochromism of silver nanoparticles into a mesoporous Titania template. Langmuir 26:8729–8736

    Article  CAS  PubMed  Google Scholar 

  17. Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18

    Article  CAS  PubMed  Google Scholar 

  18. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  19. Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264

    Article  CAS  PubMed  Google Scholar 

  20. Wu C, Cheng R, Wang J, Wang Y, Jing X, Chen R, Sun L, Yan Y (2018) Fluorescent molecularly imprinted nanoparticles for selective and rapid detection of ciprofloxacin in aquaculture water. J Sep Sci 41(19):3782–3790

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Wang T, Lu Y, Wang W, Zhou Z, Yan Y (2019) Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sens Actuators B Chem 289:242–251

    Article  CAS  Google Scholar 

  22. Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB (2020) Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 50(4):291–310

    Article  CAS  PubMed  Google Scholar 

  23. Bazi M, Balara D, Khatibi AD, Siddiqui SH, Mostafapour FK (2021) Investigation of isotherm, kinetics and thermodynamics of ciprofloxacin adsorption by molecularly imprinted polymer from aqueous solutions. Int J Pharm Investig 11:269–273

    Article  CAS  Google Scholar 

  24. Tarannum N, Khan R, Singh P (2018) Preparation and applications of modified chitosan based carbobetaine gel system for treatment of acephate contaminated water. Asian J Chem 31(1):121–127

    Article  Google Scholar 

  25. Saad PG, Castelinol RD, Ravi V, Al-Amri IS, Khan SA (2021) Green synthesis of silver nanoparticles using Omani pomegranate peel extract and two polyphenolic natural products: characterization and comparison of their antioxidant, antibacterial, and cytotoxic activities. Beni-Suef Univ J Basic Appl Sci 10(1):29

    Article  Google Scholar 

  26. Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA, Bahkali AH (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Equip 30(2):299–304

    Article  CAS  Google Scholar 

  27. Surya S, Khatoon S, Ait Lahcen A, Nguyen ATH, Dzantiev BB, Tarannum N, Salama KN (2020) A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv 10(22):12823–12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Regiel-Futyra A, Kus-Liskiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyziol A (2015) Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 7:1087–1099

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Sang Y, Liu W, Liang N, Wang Xi (2017) The development of a biomimetic enzyme-linked immunosorbent assay based on the molecular imprinting technique for the detection of enrofloxacin in animal-based food. Anal Methods 9(47):6682–6688

    Article  CAS  Google Scholar 

  30. Wang Y, Wang E, Dong H, Liu F, Wu ZM, Li HA, Wang Y (2014) Synthesis of chitosan-based molecularly imprinted polymers for pre-concentration and clean-up of chloramphenicol. Adsorp Sci Technol 32(4):321–330

    Article  Google Scholar 

  31. Yang S, Wang Y, Xu M, He M, Zhang M, Ran D, Jia X (2013) Synthesis of modified chitosan-based molecularly imprinted polymers for adsorptive protein separation. Anal Methods 5(20):5471–5477

    Article  CAS  Google Scholar 

  32. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2008) Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem Commun 10:1364–1368

    Article  CAS  Google Scholar 

  33. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46

    Article  CAS  Google Scholar 

  34. Gupta R, Mitchell D, Blanche J, Harper S, Tang W, Pancholi K, Baines L, Bucknall DG (2021) A review of sensing technologies for non-destructive evaluation of structural composite materials. J Compos Sci 5:319

    Article  CAS  Google Scholar 

  35. Wan J, Ai J, Zhang Y, Geng X, Gao Q, Cheng Z (2016) Signal-off impedimetric immunosensor for the detection of Escherichia coli O157:H7. Sci Rep 6(1):19806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yasmeen S, Kabiraz M, Saha B, Qadir M, Gafur M, Masum S (2016) Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int Res J Pure Appl Chem 10(4):1–14

    Article  CAS  Google Scholar 

  37. Pati SS, Singh LH, Guimaraes EM, Mantilla J, Coaquira JAH, Oliveira AC, Sharma VK, Garg VK (2016) Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: synthesis and characterization. J Alloys Compd 684:68–74

    Article  CAS  Google Scholar 

  38. Zhu GF, Fan J, Gao YB, Gao X, Wang JJ (2011) Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs. Talanta 84:1124–1132

    Article  CAS  PubMed  Google Scholar 

  39. Caputo F, Clogston J, Calzolai L, Rosslein M, Prina-Mello A (2019) Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Control Release 299:31–43

    Article  CAS  PubMed  Google Scholar 

  40. Al-Huqail AA, Hatata MM, AL-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319

    Article  CAS  PubMed  Google Scholar 

  41. Rautela A, Rani J, Debnath DMJ (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Anal Sci Technol 10(1):5

    Article  Google Scholar 

  42. Abazari M, Badeleh SM, Khaleghi F, Saeedi M, Haghi F (2023) Fabrication of silver nanoparticles‑deposited fabrics as a potential candidate for the development of reusable facemasks and evaluation of their performance. Sci Rep 13(1)

  43. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A Physicochem Eng 256(2–3):111–115

    Article  CAS  Google Scholar 

  44. Ayub A, Raza ZA (2021) Arsenic removal approaches: a focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 192:1196–1216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this research from the Department of Science and Technology (DST), Government of India (Project INT/RUS/RFBR/P-292, dated 20/10/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazia Tarannum.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatoon, S., Divya & Tarannum, N. Green synthesis of molecularly tailored chitosan-based gold and silver nanocomposite and their application in selective recognition of ciprofloxacin. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05224-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05224-x

Keywords

Navigation