Skip to main content
Log in

Applications of Chitosan in Molecularly and Ion Imprinted Polymers

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Chitosan is a natural polysaccharide derivative of chitin component that has been used in a wide range of fields because of their outstanding advantages, including non-toxicity, biodegradability, biocompatibility, anti-allergic, anticoagulant, antifungal and antimicrobial. Due to its excellent properties, it attracted significant attention in numerous applications such as medicine, food, and analysis fields. Recently, this polymer has been broadly utilized for the preparation of molecularly imprinted polymers (MIPs) and MIP composites. MIP is a synthetic receptor obtained by the polymerization of functional monomers in the presence of a template. The extraction of the template leaves behind specific cavities. In fact, according to our bibliographic studies about this topic, we found that chitosan is generally used in two different ways: (1) as imprinting polymer with a selected crosslinking agent to create specific cavities for the template, and (2) as additive material for MIP composite preparation. That is exactly the main goal of this review, which will be focused on discussing the roles of chitosan for MIP and MIP composite elaborations, after presenting some generalities about chitosan and MIP. A brief overview of the recent applications of MIPs and MIP composite based on chitosan is presented, but the focus is primarily put on separation and sensing applications. Among that, those designed to separate/detect heavy metals, drugs, biomolecules, and pesticides are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Lavanya F (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

    Article  CAS  Google Scholar 

  2. Toffey A, Samaranayake G, Frazier CE, Glasser WG (1996) Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J Appl Polym Sci 60:75–85. https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<75:AID-APP9>3.0.CO;2-S

    Article  CAS  Google Scholar 

  3. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  4. Monteiro OAC Jr, Airoldi C (1999) Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128. https://doi.org/10.4183/aeb.2010.521

    Article  CAS  PubMed  Google Scholar 

  5. Zwirtes de Oliveira IRW, Fernandes SC, Vieira IC (2006) Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin. J Pharm Biomed Anal 41:366–372. https://doi.org/10.1016/j.jpba.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  6. Tan Y, Jin J, Zhang S et al (2016) Electrochemical determination of bisphenol A using a molecularly imprinted chitosan–acetylene black composite film modified glassy carbon electrode. Electroanalysis 28:189–196. https://doi.org/10.1002/elan.201500533

    Article  CAS  Google Scholar 

  7. Yuan H, Meng LY, Park SJ (2016) A review: synthesis and applications of graphene/chitosan nanocomposites. Carbon Lett 17:11–17. https://doi.org/10.5714/CL.2016.17.1.011

    Article  Google Scholar 

  8. Mayes AG, Mosbach K (1997) Molecularly imprinted polymers for analytical chemistry. Trends Anal 16:321–332

    Article  CAS  Google Scholar 

  9. Lamaoui A, Lahcen AA, García-Guzmán JJ et al (2019) Study of solvent effect on the synthesis of magnetic molecularly imprinted polymers based on ultrasound probe: application for sulfonamide detection. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.104670

    Article  PubMed  Google Scholar 

  10. Sanagi MM, Salleh S, Ibrahim WAW et al (2013) Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal 32:155–161. https://doi.org/10.1016/j.jfca.2013.09.001

    Article  CAS  Google Scholar 

  11. Lahcen AA, García-Guzmán JJ, Palacios-Santander JM et al (2019) Fast route for the synthesis of decorated nanostructured magnetic molecularly imprinted polymers using an ultrasound probe. Ultrason Sonochem 53:226–236. https://doi.org/10.1016/j.ultsonch.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  12. Ashley J, Shahbazi MA, Kant K et al (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615. https://doi.org/10.1016/j.bios.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  13. Gast M, Sobek H, Mizaikoff B (2019) Advances in imprinting strategies for selective virus recognition a review. TrAC Trends Anal Chem 114:218–232. https://doi.org/10.1016/j.trac.2019.03.010

    Article  CAS  Google Scholar 

  14. Mazouz Z, Mokni M, Fourati N et al (2020) Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111978

    Article  PubMed  Google Scholar 

  15. Bezdekova J, Zemankova K, Hutarova J et al (2020) Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126673

    Article  PubMed  Google Scholar 

  16. Xu L, Huang YA, Zhu QJ, Ye C (2015) Chitosan in molecularly-imprinted polymers: current and future prospects. Int J Mol Sci 16:18328–18347. https://doi.org/10.3390/ijms160818328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan SC, Tan TK, Wong SM, Khor E (1996) The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydr Polym 30:239–242. https://doi.org/10.1016/S0144-8617(96)00052-5

    Article  CAS  Google Scholar 

  18. Methacanon P, Prasitsilp M, Pothsree T, Pattaraarchachai J (2003) Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr Polym 52:119–123. https://doi.org/10.1016/S0144-8617(02)00300-4

    Article  CAS  Google Scholar 

  19. Aye KN, Karuppuswamy R, Ahamed T, Stevens WF (2006) Peripheral enzymatic deacetylation of chitin and reprecipitated chitin particles. Bioresour Technol 97:577–582. https://doi.org/10.1016/j.biortech.2005.03.030

    Article  CAS  PubMed  Google Scholar 

  20. Chatterjee S, Adhya M, Guha AK, Chatterjee BP (2005) Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochem 40:395–400. https://doi.org/10.1016/j.procbio.2004.01.025

    Article  CAS  Google Scholar 

  21. Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P (2006) Application of fungal chitosan for clarification of apple juice. Process Biochem 41:589–593. https://doi.org/10.1016/j.procbio.2005.08.003

    Article  CAS  Google Scholar 

  22. Matsuhashi S, Kume T (1997) Enhancement of antimicrobial activity of chitosan by irradiation. J Sci Food Agric 73:237–241. https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<237:AID-JSFA711>3.0.CO;2-4

    Article  CAS  Google Scholar 

  23. Tan SC, Khor E, Tan TK, Wong SM (1998) The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta 45:713–719. https://doi.org/10.1016/S0039-9140(97)00288-9

    Article  CAS  PubMed  Google Scholar 

  24. Duarte ML, Ferreira MC, Marvão MR, Rocha J (2002) An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 31:1–8. https://doi.org/10.1016/S0141-8130(02)00039-9

    Article  CAS  PubMed  Google Scholar 

  25. Lavertu M, Xia Z, Serreqi AN et al (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158. https://doi.org/10.1016/S0731-7085(03)00155-9

    Article  CAS  PubMed  Google Scholar 

  26. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  27. Vårum KM, Myhr MM, Hjerde RJN, Smidsrød O (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299:99–101. https://doi.org/10.1016/S0008-6215(96)00332-1

    Article  PubMed  Google Scholar 

  28. Shi C, Zhu Y, Ran X et al (2005) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192. https://doi.org/10.1016/j.jss.2005.12.013

    Article  CAS  Google Scholar 

  29. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:12–13. https://doi.org/10.1023/A:1013206517442

    Article  Google Scholar 

  30. Vinsova J, Vavrikova E (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities—a review. Curr Pharm Des 17:3596–3607. https://doi.org/10.2174/138161211798194468

    Article  CAS  Google Scholar 

  31. Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648. https://doi.org/10.1016/S0142-9612(01)00403-3

    Article  CAS  PubMed  Google Scholar 

  32. Kim S (2018) Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci. https://doi.org/10.1155/2018/1708172

    Article  Google Scholar 

  33. Schipper NGM, Olsson S, Hoogstraate JA, deBoerVarumArtursson AGKMP (1997) Chitosans as absorption enhancers for poorly absorbable drugs. 2. Mechanism of absorption enhancement. Pharm Res 14:923–929. https://doi.org/10.1023/A:1012160102740

    Article  CAS  PubMed  Google Scholar 

  34. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253. https://doi.org/10.1016/S1461-5347(98)00059-5

    Article  CAS  Google Scholar 

  35. Ribeiro MP, Espiga A, Silva D et al (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17:817–824. https://doi.org/10.1111/j.1524-475X.2009.00538.x

    Article  PubMed  Google Scholar 

  36. Jun HK, Kim JS, No HK, Meyers SP (1994) Chitosan as a coagulant for recovery of proteinaceous solids from Tofu wastewater. J Agric Food Chem 42:1834–1838. https://doi.org/10.1021/jf00044a050

    Article  CAS  Google Scholar 

  37. Skorik YA, Pestov AV, Yatluk YG (2010) Evaluation of various chitin–glucan derivatives from Aspergillus niger as transition metal adsorbents. Bioresour Technol 101:1769–1775. https://doi.org/10.1016/j.biortech.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  38. Leceta I, Guerrero P, Cabezudo S, De La Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318. https://doi.org/10.1016/j.jclepro.2012.09.049

    Article  CAS  Google Scholar 

  39. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628. https://doi.org/10.1002/jssc.201200784

    Article  CAS  PubMed  Google Scholar 

  40. Lahcen AA, Amine A (2019) Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis 31:188–201. https://doi.org/10.1002/elan.201800623

    Article  CAS  Google Scholar 

  41. Hossein Beyki M, Shemirani F, Shirkhodaie M (2016) Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions. Int J Biol Macromol 87:375–384. https://doi.org/10.1016/j.ijbiomac.2016.02.077

    Article  CAS  PubMed  Google Scholar 

  42. Huang S, Xu J, Zheng J et al (2018) Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 410:3991–4014. https://doi.org/10.1007/s00216-018-1013-y

    Article  CAS  PubMed  Google Scholar 

  43. Wong A, Foguel MV, Khan S et al (2015) Development of an electrochemical sensor modified with MWCNT-COOH and MIP for detection of diuron. Electrochim Acta 182:122–130. https://doi.org/10.1016/j.electacta.2015.09.054

    Article  CAS  Google Scholar 

  44. Wang H, Zhao H, Quan X, Chen S (2011) Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis 23:1863–1869. https://doi.org/10.1002/elan.201100049

    Article  CAS  Google Scholar 

  45. Motia S, Bouchikhi B, Llobet E, El Bari N (2020) Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater. Talanta 216:120953. https://doi.org/10.1016/j.talanta.2020.120953

    Article  CAS  PubMed  Google Scholar 

  46. McCluskey A, Holdsworth CI, Bowyer MC (2007) Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? Org Biomol Chem 5:3233–3244. https://doi.org/10.1039/b708660a

    Article  CAS  PubMed  Google Scholar 

  47. Khaksar Haghani S, Ensafi AA, Kazemifard N, Rezaei B (2020) Development of a selective and sensitive chlorogenic acid fluorimetric sensor using molecularly imprinted polymer ZnO quantum dots. IEEE Sens J 20:5691–5697. https://doi.org/10.1109/JSEN.2020.2972040

    Article  Google Scholar 

  48. Ayankojo AG, Reut J, Öpik A, Syritski V (2020) Sulfamethizole-imprinted polymer on screen-printed electrodes: towards the design of a portable environmental sensor. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2020.128600

    Article  Google Scholar 

  49. Karaseva NA, Pluhar B, Beliaeva EA et al (2019) Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors. Sens Actuators B Chem 280:272–279. https://doi.org/10.1016/j.snb.2018.10.022

    Article  CAS  Google Scholar 

  50. Wei P, Zhu Z, Song R et al (2019) An ion-imprinted sensor based on chitosan–graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim Acta 317:93–101. https://doi.org/10.1016/j.electacta.2019.05.136

    Article  CAS  Google Scholar 

  51. Alvarez-Lorenzo C, Concheiro A (2004) Molecularly imprinted polymers for drug delivery. J Chromatogr B Anal Technol Biomed Life Sci 804:231–245. https://doi.org/10.1016/j.jchromb.2003.12.032

    Article  CAS  Google Scholar 

  52. Haupt K, Fradet A (2001) Polymères à empreintes moléculaires: principe et applications. Actual Chim 4:23–32

    Google Scholar 

  53. Monier M, Abdel-Latif DA, Youssef I (2018) Preparation of ruthenium(III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. J Colloid Interface Sci 513:266–278. https://doi.org/10.1016/j.jcis.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  54. Mohamed FA, Khashaba PY, El-Wekil MM, Shahin RY (2019) Fabrication of water compatible and biodegradable super-paramagnetic molecularly imprinted nanoparticles for selective separation of memantine from human serum prior to its quantification: an efficient and green pathway. Int J Biol Macromol 140:140–148. https://doi.org/10.1016/j.ijbiomac.2019.08.099

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Wang EL, Wu ZM et al (2014) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101:517–523. https://doi.org/10.1016/j.carbpol.2013.09.078

    Article  CAS  PubMed  Google Scholar 

  56. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Preparation of cross-linked chitosan/glyoxal molecularly imprinted resin for efficient chiral resolution of aspartic acid isomers. Biochem Eng J 51:140–146. https://doi.org/10.1016/j.bej.2010.06.007

    Article  CAS  Google Scholar 

  57. Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414. https://doi.org/10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  58. Rahangdale D, Kumar A (2018) Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste. Elsevier, Amsterdam

    Book  Google Scholar 

  59. Monier M, Abdel-Latif DA, Abou El-Reash YG (2016) Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions. J Colloid Interface Sci 469:344–354. https://doi.org/10.1016/j.jcis.2016.01.074

    Article  CAS  PubMed  Google Scholar 

  60. Di Bello MP, Lazzoi MR, Mele G et al (2017) A new ion-imprinted chitosan-based membrane with an azo-derivative ligand for the efficient removal of Pd(II). Materials (Basel). https://doi.org/10.3390/ma10101133

    Article  Google Scholar 

  61. Ahamed MEH, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L (2013) Selective extraction of gold(III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl)ethyl) chitosan ion-imprinted polymer. Hydrometallurgy 140:1–13. https://doi.org/10.1016/j.hydromet.2013.08.004

    Article  CAS  Google Scholar 

  62. Cheng Y, Xu K, Li H et al (2014) Preparation of urea-imprinted cross-linked chitosan and its adsorption behavior. Anal Lett 47:1063–1078. https://doi.org/10.1080/00032719.2013.860535

    Article  CAS  Google Scholar 

  63. Bagheri AR, Ghaedi M (2020) Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116102

    Article  PubMed  Google Scholar 

  64. Hashemi M, Nazari Z, Noshirvani N (2017) Synthesis of chitosan based magnetic molecularly imprinted polymers for selective separation and spectrophotometric determination of histamine in tuna fish. Carbohydr Polym 177:306–314. https://doi.org/10.1016/j.carbpol.2017.08.056

    Article  CAS  PubMed  Google Scholar 

  65. Monier M, El-Mekabaty A (2013) Preparation of molecularly imprinted resin based on chitosan for chiral recognition of S-mandelic acid. Int J Biol Macromol 55:207–213. https://doi.org/10.1016/j.ijbiomac.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  66. Wang H, Shang H, Sun X et al (2020) Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead(II) ion. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2019.124139

    Article  Google Scholar 

  67. Huang R, Shao N, Hou L, Zhu X (2019) Fabrication of an efficient surface ion-imprinted polymer based on sandwich-like graphene oxide composite materials for fast and selective removal of lead ions. Colloids Surf A Physicochem Eng Asp 566:218–228. https://doi.org/10.1016/j.colsurfa.2019.01.011

    Article  CAS  Google Scholar 

  68. Mishra S, Verma N (2017) Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: synthesis and application towards selective removal of aqueous Pb(II). Chem Eng J 313:1142–1151. https://doi.org/10.1016/j.cej.2016.11.006

    Article  CAS  Google Scholar 

  69. He J, Shang H, Zhang X, Sun X (2018) Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion. Appl Surf Sci 428:110–117. https://doi.org/10.1016/j.apsusc.2017.09.123

    Article  CAS  Google Scholar 

  70. Guo N, Su SJ, Liao B et al (2017) Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution. Carbohydr Polym 165:376–383. https://doi.org/10.1016/j.carbpol.2017.02.056

    Article  CAS  PubMed  Google Scholar 

  71. Wang L, Li J, Wang J et al (2019) Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution. J Colloid Interface Sci 541:376–386. https://doi.org/10.1016/j.jcis.2019.01.081

    Article  CAS  PubMed  Google Scholar 

  72. Lü H, An H, Xie Z (2013) Ion-imprinted carboxymethyl chitosan-silica hybrid sorbent for extraction of cadmium from water samples. Int J Biol Macromol 56:89–93. https://doi.org/10.1016/j.ijbiomac.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Lin Y, Li Y et al (2019) A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J Inorg Organomet Polym Mater 29:1874–1885. https://doi.org/10.1007/s10904-019-01148-6

    Article  CAS  Google Scholar 

  74. Zhang W, Yun M, Yu Z et al (2019) A novel Cu(II) ion-imprinted alginate-chitosan complex adsorbent for selective separation of Cu(II) from aqueous solution. Polym Bull 76:1861–1876. https://doi.org/10.1007/s00289-018-2433-8

    Article  CAS  Google Scholar 

  75. Zhang Z, Xu X, Yan Y (2010) Kinetic and thermodynamic analysis of selective adsorption of Cs(I) by a novel surface whisker-supported ion-imprinted polymer. Desalination 263:97–106. https://doi.org/10.1016/j.desal.2010.06.044

    Article  CAS  Google Scholar 

  76. Lv X, Liu Y, Zhang J et al (2019) Study on the adsorption behavior of glutaric acid modified Pb(II) imprinted chitosan-based composite membrane to Pb(II) in aqueous solution. Mater Lett 251:172–175. https://doi.org/10.1016/j.matlet.2019.04.101

    Article  CAS  Google Scholar 

  77. Xiong Y, Song Y, Tong Q et al (2017) Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep Purif Technol 177:142–151. https://doi.org/10.1016/j.seppur.2016.12.028

    Article  CAS  Google Scholar 

  78. Rahangdale D, Kumar A (2018) Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  79. Cankara S, Özkütük EB, Öztürk Ö et al (2016) Biopolymer based ion imprinting cryogel traps for the removal of Ti(I). Sep Sci Technol 51:901–908. https://doi.org/10.1080/01496395.2015.1105265

    Article  CAS  Google Scholar 

  80. Liu W, Zhang M, Liu X et al (2020) Preparation of surface ion-imprinted materials based on modified chitosan for highly selective recognition and adsorption of nickel ions in aqueous solutions. Ind Eng Chem Res 59:6033–6042. https://doi.org/10.1021/acs.iecr.9b04755

    Article  CAS  Google Scholar 

  81. Elsayed NH, Alatawi A, Monier M (2020) Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel(II) ions. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2020.104570

    Article  Google Scholar 

  82. Özkahraman B (2018) Synthesis of ion-imprinted bioadsorbents based on chitosan and its usage in Al(III) removal. J Polym Environ 26:1113–1120. https://doi.org/10.1007/s10924-017-0996-3

    Article  CAS  Google Scholar 

  83. Monier M, Abdel-Latif DA (2017) Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. Int J Biol Macromol 105:777–787. https://doi.org/10.1016/j.ijbiomac.2017.07.098

    Article  CAS  PubMed  Google Scholar 

  84. Shi Y, Zhang Q, Feng L et al (2014) Preparation and adsorption characters of Cu(II)-imprinted chitosan/attapulgite polymer. Korean J Chem Eng 31:821–827. https://doi.org/10.1007/s11814-014-0004-8

    Article  CAS  Google Scholar 

  85. Li C, Pan J, Zou X et al (2011) Synthesis and applications of novel attapulgite-supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions. Int J Environ Anal Chem 91:1035–1049. https://doi.org/10.1080/03067310903502752

    Article  CAS  Google Scholar 

  86. Liu F, Liu Y, Xu Y et al (2015) Efficient static and dynamic removal of Sr(II) from aqueous solution using chitosan ion-imprinted polymer functionalized with dithiocarbamate. J Environ Chem Eng 3:1061–1071. https://doi.org/10.1016/j.jece.2015.03.014

    Article  CAS  Google Scholar 

  87. Zhang M, Zhang Y, Helleur R (2015) Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem Eng J 264:56–65. https://doi.org/10.1016/j.cej.2014.11.062

    Article  CAS  Google Scholar 

  88. Feng T, Wang J, Zhang F, Shi X (2013) Removal of copper(II) from an aqueous solution with copper(II)-imprinted chitosan microspheres. J Appl Polym Sci 128:3631–3638. https://doi.org/10.1002/app.38406

    Article  CAS  Google Scholar 

  89. Ahmed MA, Abdelbar NM, Mohamed AA (2018) Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int J Biol Macromol 107:1046–1053. https://doi.org/10.1016/j.ijbiomac.2017.09.082

    Article  CAS  PubMed  Google Scholar 

  90. Wu H, Qiu J (2014) Adsorption performance for bromine ion using bromide ion-lanthanum nitrate modified chitosan imprinted polymer. Anal Methods 6:1890–1896. https://doi.org/10.1039/c3ay40687c

    Article  CAS  Google Scholar 

  91. Pan J, Zou X, Yan Y et al (2010) An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(II). Appl Clay Sci 50:260–265. https://doi.org/10.1016/j.clay.2010.08.007

    Article  CAS  Google Scholar 

  92. Meng M, He Z, Yan L et al (2015) Fabrication of a novel cellulose acetate imprinted membrane assisted with chitosan-wrapped multi-walled carbon nanotubes for selective separation of salicylic acid from industrial wastewater. J Appl Polym Sci 132:1–14. https://doi.org/10.1002/app.42654

    Article  CAS  Google Scholar 

  93. Bagheri AR, Ghaedi M (2019) Synthesis of chitosan based molecularly imprinted polymer for pipette-tip solid phase extraction of Rhodamine B from chili powder samples. Int J Biol Macromol 139:40–48. https://doi.org/10.1016/j.ijbiomac.2019.07.196

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Zhou J, Gu H et al (2019) Preparation of anti-nonspecific adsorption chitosan-based bovine serum albumin imprinted polymers with outstanding adsorption capacity and selective recognition ability based on magnetic microspheres. Macromol Mater Eng 304:1–9. https://doi.org/10.1002/mame.201800731

    Article  CAS  Google Scholar 

  95. Zhang C, Jia X, Wang Y et al (2014) Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA. J Sep Sci 37:419–426. https://doi.org/10.1002/jssc.201301155

    Article  CAS  PubMed  Google Scholar 

  96. Liu Y, Cao X, Hua R et al (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104:150–155. https://doi.org/10.1016/j.hydromet.2010.05.009

    Article  CAS  Google Scholar 

  97. Xiao X, Li Z, Liu Y, Jia L (2019) Preparation of chitosan-based molecularly imprinted material for enantioseparation of racemic mandelic acid in aqueous medium by solid phase extraction. J Sep Sci 42:3544–3552. https://doi.org/10.1002/jssc.201900825

    Article  CAS  PubMed  Google Scholar 

  98. Ma X, Zhang Z, Zheng Y et al (2014) Water-compatible imprinted polymers based on CS@SiO2 particles for selective recognition of naringin. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.40491

    Article  CAS  Google Scholar 

  99. Chen S, Luo Z, Ma X et al (2012) Efficient separation and purification of epigallocatechin gallate (EGCG) based on EGCG-imprinted polymer prepared with chitosan as matrix. Anal Lett 45:2300–2309. https://doi.org/10.1080/00032719.2012.686132

    Article  CAS  Google Scholar 

  100. Deng H, Wei Z, Wang XN (2017) Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. Carbohydr Polym 157:1190–1197. https://doi.org/10.1016/j.carbpol.2016.10.087

    Article  CAS  PubMed  Google Scholar 

  101. Eremina OE, Veselova IA, Borzenkova NV, Shekhovtsova TN (2019) Optically transparent chitosan hydrogels for selective sorption and fluorometric determination of dibenzothiophenes. Carbohydr Polym 216:260–269. https://doi.org/10.1016/j.carbpol.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  102. Mulyasuryani A, Haryanto E, Sulistyarti H, Rumhayati B (2018) Molecularly imprinted polymers chitosan–glutaraldehyde for monosodium glutamate. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/299/1/012010

    Article  Google Scholar 

  103. Wang Y, Wang E, Dong H et al (2014) Synthesis of chitosan-based molecularly imprinted polymers for pre-concentration and clean-up of chloramphenicol. Adsorpt Sci Technol 32:321–330. https://doi.org/10.1260/0263-6174.32.4.321

    Article  Google Scholar 

  104. Ahmad OS, Bedwell TS, Esen C et al (2018) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.08.009

    Article  PubMed  Google Scholar 

  105. Jiao Z, Li J, Mo L et al (2018) A molecularly imprinted chitosan doped with carbon quantum dots for fluorometric determination of perfluorooctane sulfonate. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-018-2996-y

    Article  CAS  Google Scholar 

  106. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8:2043–2081. https://doi.org/10.3390/s8042043

    Article  CAS  PubMed  Google Scholar 

  107. Chakroun Galai H, Namour P, Bonhomme A et al (2020) Elaboration of an imprinted polymer film based on chitosan electrodeposition for the voltammetric detection of BPA. J Electrochem Soc 167:027507. https://doi.org/10.1149/1945-7111/ab6283

    Article  CAS  Google Scholar 

  108. Zouaoui F, Bourouina-Bacha S, Bourouina M et al (2020) Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens Actuators B Chem 309:1–7. https://doi.org/10.1016/j.snb.2020.127753

    Article  CAS  Google Scholar 

  109. Salvo-Comino C, Rassas I, Minot S et al (2020) Voltammetric sensor based on electrodeposited molecularly imprinted chitosan film on BDD electrodes for catechol detection in buffer and in wine samples. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.110667

    Article  Google Scholar 

  110. Wei M, Liu Y, Gu ZZ, Liu ZD (2011) Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO2 nanorod composite. J Chin Chem Soc 58:516–521. https://doi.org/10.1002/jccs.201190015

    Article  CAS  Google Scholar 

  111. Lv M, Wei M, Rong F et al (2010) Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22:199–203. https://doi.org/10.1002/elan.200900296

    Article  CAS  Google Scholar 

  112. Wu S, Dai X, Cheng T, Li S (2018) Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan–graphene nanocomposites for the determination of Cr(VI). Carbohydr Polym 195:199–206. https://doi.org/10.1016/j.carbpol.2018.04.077

    Article  CAS  PubMed  Google Scholar 

  113. Chen L, Lian HT, Sun XY, Liu B (2017) Sensitive detection of l-5-hydroxytryptophan based on molecularly imprinted polymers with graphene amplification. Anal Biochem 526:58–65. https://doi.org/10.1016/j.ab.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  114. Liu B, Lian HT, Yin JF, Sun XY (2012) Dopamine molecularly imprinted electrochemical sensor based on graphene–chitosan composite. Electrochim Acta 75:108–114. https://doi.org/10.1016/j.electacta.2012.04.081

    Article  CAS  Google Scholar 

  115. Lian HT, Liu B, Chen YP, Sun XY (2012) A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal Biochem 426:40–46. https://doi.org/10.1016/j.ab.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  116. Wu Y, Deng P, Tian Y et al (2020) Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry. https://doi.org/10.1016/j.bioelechem.2019.107393

    Article  PubMed  Google Scholar 

  117. Salvo-Comino C, Rassas I, Minot S et al (2020) Voltammetric sensor based on molecularly imprinted chitosan–carbon nanotubes decorated with gold nanoparticles nanocomposite deposited on boron-doped diamond electrodes for catechol detection. Materials (Basel) 13:1–11. https://doi.org/10.3390/ma13030688

    Article  CAS  Google Scholar 

  118. Deng P, Xu Z, Kuang Y (2014) Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan–graphene composite film modified electrode. Food Chem 157:490–497. https://doi.org/10.1016/j.foodchem.2014.02.074

    Article  CAS  PubMed  Google Scholar 

  119. Huang J, Zhang X, Liu S et al (2011) Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles. J Appl Electrochem 41:1323–1328. https://doi.org/10.1007/s10800-011-0350-8

    Article  CAS  Google Scholar 

  120. Liu B, Lian H, Chen L et al (2019) Differential potential ratiometric sensing platform for enantiorecognition of chiral drugs. Anal Biochem 574:39–45. https://doi.org/10.1016/j.ab.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  121. Gan T, Lv Z, Sun Y et al (2016) Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification. J Appl Electrochem 46:389–401. https://doi.org/10.1007/s10800-016-0923-7

    Article  CAS  Google Scholar 

  122. Wang L, Yang H, Xu L et al (2020) A novel popamine-imprinted chitosan/CuCo2O4@carbon/three-dimensional macroporous carbon integrated electrode. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152771

    Article  Google Scholar 

  123. Srivastava J, Gupta N, Kushwaha A et al (2019) Highly sensitive and selective estimation of aspartame by chitosan nanoparticles–graphene nanocomposite tailored EQCM-MIP sensor. Polym Bull 76:4431–4449. https://doi.org/10.1007/s00289-018-2597-2

    Article  CAS  Google Scholar 

  124. Lin Lu, Lian H-T, Sun X-Y, Yaming Yu BL (2015) l-Dopa electrochemical sensor based on graphene doped molecularly imprinted chitosan film. Anal Methods. https://doi.org/10.1039/c4ay02524e

    Article  Google Scholar 

  125. Zhao WR, Kang TF, Lu LP et al (2017) A novel electrochemical sensor based on gold nanoparticles and molecularly imprinted polymer with binary functional monomers for sensitive detection of bisphenol A. Elsevier, Amsterdam

    Book  Google Scholar 

  126. Qin S, Su L, Wang P, Gao Y (2015) Rapid and selective extraction of multiple sulfonamides from aqueous samples based on Fe3O4–chitosan molecularly imprinted polymers. Anal Methods 7:8704–8713. https://doi.org/10.1039/c5ay01499a

    Article  CAS  Google Scholar 

  127. Ou H, Chen Q, Pan J et al (2015) Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion. J Hazard Mater 289:28–37. https://doi.org/10.1016/j.jhazmat.2015.02.030

    Article  CAS  PubMed  Google Scholar 

  128. Liu G, Li T, Yang X et al (2016) Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4–chitosan. Carbohydr Polym 137:75–81. https://doi.org/10.1016/j.carbpol.2015.10.062

    Article  CAS  PubMed  Google Scholar 

  129. Li X, Pan J, Dai J et al (2012) Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin. Chem Eng J 198:503–511. https://doi.org/10.1016/j.cej.2012.05.106

    Article  CAS  Google Scholar 

  130. Sun J, Guo W, Ji J et al (2020) Removal of patulin in apple juice based on novel magnetic molecularly imprinted adsorbent Fe3O4@SiO2@CS-GO@MIP. LWT. https://doi.org/10.1016/j.lwt.2019.108854

    Article  Google Scholar 

  131. Barati A, Kazemi E, Dadfarnia S, Haji Shabani AM (2017) Synthesis/characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. J Ind Eng Chem 46:212–221. https://doi.org/10.1016/j.jiec.2016.10.033

    Article  CAS  Google Scholar 

  132. Huang D, Tang Z, Peng Z et al (2017) Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J Taiwan Inst Chem Eng 77:113–121. https://doi.org/10.1016/j.jtice.2017.04.030

    Article  CAS  Google Scholar 

  133. Pan J, Hu W, Dai X et al (2011) Molecularly imprinted polymers based on magnetic fly-ash-cenosphere composites for bisphenol A recognition. J Mater Chem 21:15741–15751. https://doi.org/10.1039/c1jm12099a

    Article  CAS  Google Scholar 

  134. Kazemi E, Dadfarnia S, Haji Shabani AM, Ranjbar M (2017) Synthesis, characterization, and application of a Zn(II)-imprinted polymer grafted on graphene oxide/magnetic chitosan nanocomposite for selective extraction of zinc ions from different food samples. Food Chem 237:921–928. https://doi.org/10.1016/j.foodchem.2017.06.053

    Article  CAS  PubMed  Google Scholar 

  135. Jalilian R, Shahmari M, Taheri A, Gholami K (2020) Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized Pickering emulsion in water, rice and vegetable samples. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.104802

    Article  PubMed  Google Scholar 

  136. Ma W, Dai J, Dai X et al (2015) Core-shell molecularly imprinted polymers based on magnetic chitosan microspheres for chloramphenicol selective adsorption. Monatsh Chem 146:465–474. https://doi.org/10.1007/s00706-014-1351-1

    Article  CAS  Google Scholar 

  137. Sun Q, Qiao X, Zhao Y, Xu Z (2014) Synthesis of an organic–inorganic hybrid polymeric material and its adsorption performance characterization toward acrylamide. J Macromol Sci Part B Phys 53:683–692. https://doi.org/10.1080/00222348.2013.857550

    Article  CAS  Google Scholar 

  138. Su LQ, Gao Y, Qin SL, Li JJ (2016) Determination of atrazine in vegetables with extraction by a magnetite-chitosan molecularly imprinted polymer and gas chromatography. Anal Lett 49:2177–2192. https://doi.org/10.1080/00032719.2016.1140771

    Article  CAS  Google Scholar 

  139. Shi C, Dai B, Liu M, Xu Z (2014) Preparation of an estriol surface imprinted polymer and its adsorption ability evaluation. J Macromol Sci Part B Phys 53:662–672. https://doi.org/10.1080/00222348.2013.857534

    Article  CAS  Google Scholar 

  140. Zhanga C, Wanga Y, Guoa J, Liua YZ b (2015) Chitosan nanoparticle carrier based on surface molecularly imprinted polymers for the recognition and separation of protein. RSC Adv 5. Royal society of chemistry: 106197–106205. https://doi.org/10.1039/c5ra14088a.

  141. Guo H, Yuan D, Fu G (2015) Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres. J Colloid Interface Sci 440:53–59. https://doi.org/10.1016/j.jcis.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  142. Ma W, Dai Y, Row KH (2018) Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis 39:2039–2046. https://doi.org/10.1002/elps.201800034

    Article  CAS  Google Scholar 

  143. Wang R, Cui Y, Hu F et al (2019) Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A 1591:62–70. https://doi.org/10.1016/j.chroma.2019.01.057

    Article  CAS  PubMed  Google Scholar 

  144. Dong X, Ma Y, Hou C et al (2019) Preparation of pH and temperature dual-sensitive molecularly imprinted polymers based on chitosan and N-isopropylacrylamide for recognition of bovine serum albumin. Polym Int 68:955–963. https://doi.org/10.1002/pi.5786

    Article  CAS  Google Scholar 

  145. Guo W, Pi F, Zhang H et al (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:299–304. https://doi.org/10.1016/j.bios.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  146. Chen HJ, Zhang ZH, Luo LJ, Yao SZ (2012) Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sens Actuators B Chem 163:76–83. https://doi.org/10.1016/j.snb.2012.01.010

    Article  CAS  Google Scholar 

  147. Bai J, Zhang X, Peng Y et al (2017) Ultrasensitive sensing of diethylstilbestrol based on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an electrochemical sensor. Sens Actuators B Chem 238:420–426. https://doi.org/10.1016/j.snb.2016.07.035

    Article  CAS  Google Scholar 

  148. Lian W, Liu S, Yu J et al (2012) Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/grapheme–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron 38:163–169. https://doi.org/10.1016/j.bios.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  149. Surya SG, Khatoon S, Lahcen AA et al (2020) A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv 10:12823–12832. https://doi.org/10.1039/d0ra01838d

    Article  CAS  Google Scholar 

  150. Yang Y, Fang G, Liu G et al (2013) Electrochemical sensor based on molecularly imprinted polymer film via sol-gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid. Biosens Bioelectron 47:475–481. https://doi.org/10.1016/j.bios.2013.03.054

    Article  CAS  PubMed  Google Scholar 

  151. Huamin Q, Lulu F, Li X et al (2013) Determination sulfamethoxazole based chemiluminescence and chitosan/graphene oxide-molecularly imprinted polymers. Carbohydr Polym 92:394–399. https://doi.org/10.1016/j.carbpol.2012.09.092

    Article  CAS  PubMed  Google Scholar 

  152. Zhang J, Lei J, Ju H, Wang C (2013) Electrochemical sensor based on chlorohemin modified molecularly imprinted microgel for determination of 2,4-dichlorophenol. Anal Chim Acta 786:16–21. https://doi.org/10.1016/j.aca.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  153. Ma Y, Shen XL, Wang HS et al (2017) MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I. Anal Biochem 520:9–15. https://doi.org/10.1016/j.ab.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  154. Xia J, Cao X, Wang Z et al (2016) Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid-graphene composites modified electrode for determination of bovine serum albumin. Sens Actuators B Chem 225:305–311. https://doi.org/10.1016/j.snb.2015.11.060

    Article  CAS  Google Scholar 

  155. Zheng W, Wu H, Jiang Y et al (2018) A molecularly-imprinted-electrochemical-sensor modified with nano-carbon-dots with high sensitivity and selectivity for rapid determination of glucose. Anal Biochem 555:42–49. https://doi.org/10.1016/j.ab.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  156. Jalalvand AR, Zangeneh MM, Jalili F et al (2020) An elegant technology for ultrasensitive impedimetric and voltammetric determination of cholestanol based on a novel molecularly imprinted electrochemical sensor. Chem Phys Lipids. https://doi.org/10.1016/j.chemphyslip.2020.104895

    Article  PubMed  Google Scholar 

  157. Huang J, Xing X, Zhang X et al (2011) A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res Int 44:276–281. https://doi.org/10.1016/j.foodres.2010.10.020

    Article  CAS  Google Scholar 

  158. Shen X, Ma Y, Zeng Q et al (2017) Ultrasensitive determination of human chorionic gonadotropin using a molecularly imprinted electrochemical sensor. ChemistrySelect 2:6549–6555. https://doi.org/10.1002/slct.201700962

    Article  CAS  Google Scholar 

  159. Chen YP, Liu B, Lian HT, Sun XY (2011) Preparation and application of urea electrochemical sensor based on chitosan molecularly imprinted films. Electroanalysis 23:1454–1461. https://doi.org/10.1002/elan.201000693

    Article  CAS  Google Scholar 

  160. Zhang W, Xiong H, Chen M et al (2017) Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1. Biosens Bioelectron 96:55–61. https://doi.org/10.1016/j.bios.2017.04.035

    Article  CAS  PubMed  Google Scholar 

  161. Roushani M, Saedi Z, Hamdi F, Dizajdizi BZ (2017) Preparation an electrochemical sensor for detection of manganese(II) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer. J Electroanal Chem 804:1–6. https://doi.org/10.1016/j.jelechem.2017.09.038

    Article  CAS  Google Scholar 

  162. Wang Q, Chen M, Zhang H et al (2016) Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Biosens Bioelectron 79:561–567. https://doi.org/10.1016/j.bios.2015.12.098

    Article  CAS  PubMed  Google Scholar 

  163. Meng X, Guo W, Qin X et al (2014) A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube-chitosan for the detection of tryptamine. RSC Adv 4:38649–38654. https://doi.org/10.1039/c4ra04503c

    Article  CAS  Google Scholar 

  164. Lian W, Liu S, Yu J et al (2013) Determination of oxytetracycline with a gold electrode modified by chitosan-multiwalled carbon nanotube multilayer films and gold nanoparticles. Anal Lett 46:1117–1131. https://doi.org/10.1080/00032719.2012.751540

    Article  CAS  Google Scholar 

  165. Lian W, Liu S, Yu J et al (2013) Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan–silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 44:70–76. https://doi.org/10.1016/j.bios.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  166. Azadmehr F, Zarei K (2019) An imprinted polymeric matrix containing DNA for electrochemical sensing of 2,4–dichlorophenoxyacetic acid. Microchim Acta. https://doi.org/10.1007/s00604-019-3980-x

    Article  Google Scholar 

  167. Liu X, Mao LG, Wang YL et al (2016) Electrochemical sensor based on imprinted sol-gel polymer on Au NPs-MWCNTs-CS modified electrode for the determination of acrylamide. Food Anal Methods 9:114–121. https://doi.org/10.1007/s12161-015-0172-0

    Article  Google Scholar 

  168. Duan H, Li L, Wang X et al (2016) CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor. Spectrochim Acta Part A Mol Biomol Spectrosc 153:535–541. https://doi.org/10.1016/j.saa.2015.09.016

    Article  CAS  Google Scholar 

  169. Zhao C, Jin GP, Chen LL et al (2011) Preparation of molecular imprinted film based on chitosan/nafion/nano-silver/poly quercetin for clenbuterol sensing. Food Chem 129:595–600. https://doi.org/10.1016/j.foodchem.2011.04.072

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aziz Amine or José María Palacios-Santander.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karrat, A., Lamaoui, A., Amine, A. et al. Applications of Chitosan in Molecularly and Ion Imprinted Polymers. Chemistry Africa 3, 513–533 (2020). https://doi.org/10.1007/s42250-020-00177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00177-w

Keywords

Navigation