Skip to main content

Tuning Nanostructured Materials Properties Through Microwave-Assisted Synthesis

  • Chapter
  • First Online:
Technological Applications of Nanomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 819 Accesses

Abstract

Many methods can synthesize nanomaterials. However, the methods interfere with the behavior of nanomaterials, emerging several applications. There are changes in the properties of nanomaterials through the use of microwave-assisted synthesis. The major changes are size, homogeneous distribution, and morphology modification. Changes are consequences of rapid heating provided by microwaves. These changes modify the mechanical, optical, magnetic, and electrical properties. The behavior of nanomaterials can be enhanced or depreciated depending on the parameters used in the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GHz:

GigaHertz

PANI:

Polyaniline

TEM:

Transmission Electron Microscopy

UV:

Ultraviolet light

References

  1. JJ Hinman KS Suslick 2017 Nanostructured materials synthesis using ultrasound Top. Curr. Chem. 375 1 36 https://doi.org/10.1007/s41061-016-0100-9

    Article  CAS  Google Scholar 

  2. P Aarthye M Sureshkumar 2021 Green synthesis of nanomaterials: An overview Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.04.564

    Article  Google Scholar 

  3. CS Erhardt LE Caldeira J Venturini SR Bragança CP Bergmann 2020 Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 nanoparticles Ceram. Int. 46 12759 12766 https://doi.org/10.1016/j.ceramint.2020.02.044

    Article  CAS  Google Scholar 

  4. GP Barreto G Morales MLL Quintanilla 2013 Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO Morphology development J. Mater. 2013 1 11 https://doi.org/10.1155/2013/478681

    Article  CAS  Google Scholar 

  5. Liang, W., Lu, Y., Li, N., Li, H., Zhu, F.: Microwave-assisted synthesis of magnetic surface molecular imprinted polymer for adsorption and solid phase extraction of 4-nitrophenol in wastewater. Microchem. J. 159 (2020). https://doi.org/10.1016/j.microc.2020.105316

  6. H Li Z Zhao C Xiouras GD Stefanidis X Li X Gao 2019 Fundamentals and applications of microwave heating to chemicals separation processes Renew. Sustain. Energy Rev. 114 109316 https://doi.org/10.1016/j.rser.2019.109316

    Article  CAS  Google Scholar 

  7. LY Meng B Wang MG Ma KL Lin 2016 The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials Mater. Today Chem. 1–2 63 83 https://doi.org/10.1016/j.mtchem.2016.11.003

    Article  Google Scholar 

  8. Lagashetty, A., Havanoor, V., Basavaraja, S.: Microwave-assisted route for synthesis of nanosized metal oxides. 8, 484–493 (2007). https://doi.org/10.1016/j.stam.2007.07.001

  9. RR Mishra AK Sharma 2016 Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing Compos. Part A Appl. Sci. Manuf. 81 78 97 https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  10. Wang, S.: Microwave processing. Handb. Food Saf. Eng. 371–393 (2012). https://doi.org/10.1002/9781444355321.ch15

  11. PP Falciglia P Roccaro L Bonanno G Guidi De FGA Vagliasindi S Romano 2018 A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications Renew. Sustain. Energy Rev. 95 147 170 https://doi.org/10.1016/j.rser.2018.07.031

    Article  CAS  Google Scholar 

  12. Y Sun P Zhang J Hu B Liu J Yang S Liang K Xiao H Hou 2021 A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges Constr. Build. Mater. 294 123491 https://doi.org/10.1016/j.conbuildmat.2021.123491

    Article  CAS  Google Scholar 

  13. JA Nóbrega LC Trevizan GCL Araújo ARA Nogueira 2002 Focused-microwave-assisted strategies for sample preparation, Spectrochim Acta - Part B At. Spectrosc. 57 1855 1876 https://doi.org/10.1016/S0584-8547(02)00172-6

    Article  Google Scholar 

  14. Reyes, O., Pal, M., Escorcia‐García, J., Sánchez-Albores, R., Sebastian, P.J.: Microwave-assisted chemical synthesis of Zn2SnO4 nanoparticles. Mater. Sci. Semicond. Process. 108 (2020). https://doi.org/10.1016/j.mssp.2019.104878

  15. A Kumar Y Kuang Z Liang X Sun 2020 Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review Mater. Today Nano. 11 100076 https://doi.org/10.1016/j.mtnano.2020.100076

    Article  Google Scholar 

  16. LS Ribeiro IM Pinatti JA Torres AS Giroto F Lesse E Longo C Ribeiro AE Nogueira 2020 Rapid microwave-assisted hydrothermal synthesis of CuBi2O4 and its application for the artificial photosynthesis Mater. Lett. 275 128165 https://doi.org/10.1016/j.matlet.2020.128165

    Article  CAS  Google Scholar 

  17. Sathiyamoorthi, P., Kim, H.S.: High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 100709 (2020). https://doi.org/10.1016/j.pmatsci.2020.100709

  18. Ghomash Pasand, E., Nemati, A., Solati-Hashjin, M., Arzani, K., Farzadi, A.: Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate. Int. J. Miner. Metall. Mater. 19, 441–445 (2012). https://doi.org/10.1007/s12613-012-0576-4

  19. S Shen S Cai M Zhang G Xu Y Li R Ling X Wu 2015 Microwave assisted deposition of hydroxyapatite coating on a magnesium alloy with enhanced corrosion resistance Mater. Lett. 159 146 149 https://doi.org/10.1016/j.matlet.2015.06.096

    Article  CAS  Google Scholar 

  20. T Batool BS Bukhari S Riaz KM Batoo EH Raslan M Hadi S Naseem 2020 Microwave assisted sol-gel synthesis of bioactive zirconia nanoparticles—correlation of strength and structure J. Mech. Behav. Biomed. Mater. 112 104012 https://doi.org/10.1016/j.jmbbm.2020.104012

    Article  CAS  Google Scholar 

  21. Z Tang Z Huang W Han J Qi N Ma Y Zhang T Lu 2020 Microwave-assisted synthesis of uranium doped Y2Zr2O7 transparent ceramics as potential near-infrared optical lens Scr. Mater. 178 90 93 https://doi.org/10.1016/j.scriptamat.2019.11.007

    Article  CAS  Google Scholar 

  22. TL Ruwer J Venturini S Khan CP Bergmann 2020 Quick synthesis of homogeneous Nb2O5 nanorod arrays via a microwave-assisted hydrothermal method Mater. Lett. 265 127429 https://doi.org/10.1016/j.matlet.2020.127429

    Article  CAS  Google Scholar 

  23. M Parthibavarman S Sathishkumar M Jayashree R BoopathiRaja 2019 Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance J. Clust. Sci. 30 351 363 https://doi.org/10.1007/s10876-018-01493-5

    Article  CAS  Google Scholar 

  24. AG Agrios P Pichat 2005 State of the art and perspectives on materials and applications of photocatalysis over TiO2 J. Appl. Electrochem. 35 655 663 https://doi.org/10.1007/s10800-005-1627-6

    Article  CAS  Google Scholar 

  25. Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H.: Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 7 (2019). https://doi.org/10.1016/j.jece.2019.103248

  26. X Chen Z Wu D Liu Z Gao 2017 Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes Nanoscale Res. Lett. 12 4 13 https://doi.org/10.1186/s11671-017-1904-4

    Article  CAS  Google Scholar 

  27. K Qi B Cheng J Yu W Ho 2017 Review on the improvement of the photocatalytic and antibacterial activities of ZnO J. Alloys Compd. 727 792 820 https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  28. Akshatha, S., Sreenivasa, S., Parashuram, L., Udaya kumar, V., Alharthi, F.A., Chakrapani Rao, T.M., kumar, S.: Microwave assisted green synthesis of p-type Co3O4@Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Mater. Sci. Semicond. Process 121, 105432 (2021). https://doi.org/10.1016/j.mssp.2020.105432

  29. S Choudhary A Bisht S Mohapatra 2021 Microwave-assisted synthesis of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures for photocatalytic applications Ceram. Int. 47 3833 3841 https://doi.org/10.1016/j.ceramint.2020.09.243

    Article  CAS  Google Scholar 

  30. CH Claudino M Kuznetsova BS Rodrigues C Chen Z Wang M Sardela JS Souza 2020 Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity Mater. Res. Bull. 125 110783 https://doi.org/10.1016/j.materresbull.2020.110783

    Article  CAS  Google Scholar 

  31. UT Nakate SN Kale 2016 Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and Electrical, magnetic properties Mater. Today Proc. 3 1992 1998 https://doi.org/10.1016/j.matpr.2016.04.101

    Article  Google Scholar 

  32. Z Ai K Deng Q Wan L Zhang S Lee 2010 Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses J. Phys. Chem. C. 114 6237 6242 https://doi.org/10.1021/jp910514f

    Article  CAS  Google Scholar 

  33. Gurgel, A.L., Martinelli, A.E., de A. Conceição, O.L., Xavier, M.M., Morales Torres, M.A., de Araújo Melo, D.M.: Microwave-assisted hydrothermal synthesis and magnetic properties of nanostructured cobalt ferrite. J. Alloys Compd. 799, 36–42 (2019). https://doi.org/10.1016/j.jallcom.2019.05.309

  34. Tony Dhiwahar, A., Sundararajan, M., Sakthivel, P., Dash, C.S., Yuvaraj, S.: Microwave-assisted combustion synthesis of pure and zinc-doped copper ferrite nanoparticles: Structural, morphological, optical, vibrational, and magnetic behavior. J. Phys. Chem. Solids. 138, 109257 (2020). https://doi.org/10.1016/j.jpcs.2019.109257.

  35. J Wang R Zeng G Du W Li Z Chen S Li Z Guo S Dou 2015 Rapid microwave-assisted synthesis of various MnO2 nanostructures and their magnetic properties Mater. Chem. Phys. 166 42 48 https://doi.org/10.1016/j.matchemphys.2015.08.020

    Article  CAS  Google Scholar 

  36. JDC Carregosa JPF Grilo GS Godoi DA Macedo RM Nascimento RMPB Oliveira 2020 Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties Ceram. Int. 46 23271 23275 https://doi.org/10.1016/j.ceramint.2020.06.021

    Article  CAS  Google Scholar 

  37. Ferrel-Alvarez, A.C., Domínguez-Crespo, M.A., Cong, H., Torres-Huerta, A.M., Palma-Ramírez, D., Irvine, J.T.S.: Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: Electrical and electrochemical performance. J. Alloys Compd. 851, 156882 (2021). https://doi.org/10.1016/j.jallcom.2020.156882.

  38. S Krithika J Balavijayalakshmi 2021 Synthesis and fabrication of nanostructured MoS2/PANI nanocomposites by microwave assisted method for electrochemical applications Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.01.013

    Article  Google Scholar 

  39. Chen, P., De Peng, J., Liao, C.H., Shen, P.S., Kuo, P.L.: Microwave-assisted hydrothermal synthesis of TiO2 spheres with efficient photovoltaic performance for dye-sensitized solar cells. J. Nanoparticle Res. 15 (2013). https://doi.org/10.1007/s11051-013-1465-0.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stockey Erhardt, C. (2022). Tuning Nanostructured Materials Properties Through Microwave-Assisted Synthesis. In: Kopp Alves, A. (eds) Technological Applications of Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-86901-4_13

Download citation

Publish with us

Policies and ethics