Skip to main content
Log in

Effect of the amine and carboxyl functionalised graphene on the thermomechanical and interfacial properties of the shape memory polymer nanocomposites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The reinforcement of graphene nanoplatelets produces superior mechanical and thermomechanical properties in the epoxy nanocomposites. The nanocomposites with different proportions of pristine GNP (pGNP), amine functionalised GNP (NH2-fGNP) and carboxyl functionalised GNP (COOH-fGNP) were fabricated by magnetic stirring and ultrasonication. The attached carboxyl and amine groups formed covalent and non-covalent bonding with the epoxy matrix which aids in the uniform dispersion of the nanofillers in the polymer as compared to the pristine GNP. The improvement in the mechanical and thermomechanical properties was exhibited due to the better interfacial bonding and effective stress transmission between GNP and matrix because of the improved distribution of nanoparticles. The improvement of 14% and 10% was obtained in the nanocomposites with amine and carboxyl fGNP, respectively, as compared to the pure epoxy. Similar trends were even noticed in the results of the dynamic mechanical analysis. The surface morphology of the fractured samples was studied through scanning electron microscopy which provided the better interfacial bonding due to the modification of the GNP. The shape memory effect in the hybridised nanocomposites was evaluated by heat stimulated bending tests which showed encouraging results of shape fixity and shape recovery of 92% and 96%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaldéus T, Träger A, Berglund LA et al (2019) Molecular engineering of the cellulose-poly(caprolactone) bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles. ACS Nano 13:6409–6420. https://doi.org/10.1021/acsnano.8b08257

    Article  CAS  PubMed  Google Scholar 

  2. Emmanuel KDC, Herath HMCM, Jeewantha LHJ et al (2021) Thermomechanical and fire performance of DGEBA based shape memory polymer composites for constructions. Constr Build Mater 303:124442. https://doi.org/10.1016/j.conbuildmat.2021.124442

    Article  CAS  Google Scholar 

  3. Cabanlit M, Maitland D, Wilson T et al (2007) Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro. Macromol Biosci 7:48–55. https://doi.org/10.1002/mabi.200600177

    Article  CAS  PubMed  Google Scholar 

  4. Xin X, Liu L, Liu Y, Leng J (2019) Mechanical models, structures, and applications of shape-memory polymers and their composites. Acta Mech Solida Sin 32:535–565. https://doi.org/10.1007/s10338-019-00103-9

    Article  Google Scholar 

  5. Mir SH, Ochiai B (2016) Fabrication of polymer-Ag honeycomb hybrid film by metal complexation induced phase separation at the air/water interface. Macromol Mater Eng 301:1026–1031. https://doi.org/10.1002/mame.201600035

    Article  CAS  Google Scholar 

  6. Tobushi H, Hayashi S, Hoshio K, Ejiri Y (2008) Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer. Sci Technol Adv Mater 9:015009. https://doi.org/10.1088/1468-6996/9/1/015009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430. https://doi.org/10.1016/j.reactfunctpolym.2012.06.009

    Article  CAS  Google Scholar 

  8. Herath HMCM, Epaarachchi JA, Islam MM et al (2018) Structural performance and photothermal recovery of carbon fibre reinforced shape memory polymer. Compos Sci Technol 167:206–214. https://doi.org/10.1016/j.compscitech.2018.07.042

    Article  CAS  Google Scholar 

  9. Zhao W, Liu L, Zhang F et al (2019) Shape memory polymers and their composites in biomedical applications. Mater Sci Eng C 97:864–883. https://doi.org/10.1016/j.msec.2018.12.054

    Article  CAS  Google Scholar 

  10. Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262. https://doi.org/10.3390/ma9040262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li B, Dong S, Wu X et al (2017) Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos Sci Technol 147:52–61. https://doi.org/10.1016/j.compscitech.2017.05.006

    Article  CAS  Google Scholar 

  12. Hao B, Ma Q, Yang S et al (2016) Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Compos Sci Technol 129:38–45. https://doi.org/10.1016/j.compscitech.2016.04.012

    Article  CAS  Google Scholar 

  13. Alhabill FN, Vaughan AS, Andritsch T (2021) On nanocomposite fabrication: using rheology to characterize filler/polymer interactions in epoxy-based nanocomposites. Mater Today Chem 22:100559. https://doi.org/10.1016/j.mtchem.2021.100559

    Article  CAS  Google Scholar 

  14. Mir SH, Ochiai B (2016) Development of hierarchical Polymer@Pd nanowire-network: synthesis and application as highly active recyclable catalyst and printable conductive ink. ChemistryOpen 5:213–218. https://doi.org/10.1002/open.201600009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang XC, Peng HX, Limmack AP, Scarpa F (2014) Viscoelastic damping behaviour of cup stacked carbon nanotube modified epoxy nanocomposites with tailored interfacial condition and re-agglomeration. Compos Sci Technol 105:66–72. https://doi.org/10.1016/j.compscitech.2014.09.020

    Article  CAS  Google Scholar 

  16. DintchevaArrigoMorici NTRE et al (2015) Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight polyethylene-based nanocomposites. Compos B Eng 82:196–204. https://doi.org/10.1016/j.compositesb.2015.07.017

    Article  CAS  Google Scholar 

  17. Liebscher M, Gärtner T, Tzounis L et al (2014) Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Compos Sci Technol 101:133–138. https://doi.org/10.1016/j.compscitech.2014.07.009

    Article  CAS  Google Scholar 

  18. Mir SH, Ebata K, Yanagiya H, Ochiai B (2018) Alignment of Ag nanoparticles with graft copolymer bearing thiocarbonyl moieties. Microsyst Technol 24:605–611. https://doi.org/10.1007/s00542-017-3418-5

    Article  CAS  Google Scholar 

  19. Ji X, Cui L, Xu Y, Liu J (2015) Non-covalent interactions for synthesis of new graphene based composites. Compos Sci Technol 106:25–31. https://doi.org/10.1016/j.compscitech.2014.10.018

    Article  CAS  Google Scholar 

  20. Cha J, Kim J, Ryu S, Hong SH (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos B Eng 162:283–288. https://doi.org/10.1016/j.compositesb.2018.11.011

    Article  CAS  Google Scholar 

  21. Mir SH, Nagahara LA, Thundat T et al (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137. https://doi.org/10.1149/2.0191808jes

    Article  CAS  Google Scholar 

  22. Tiwari N, Gagare SW, Shaikh AA (2021) Shape recovery analysis of the additive manufactured 3D smart surfaces through reverse engineering. Prog Addit Manuf. https://doi.org/10.1007/s40964-020-00162-2

    Article  Google Scholar 

  23. Karami H, Papari-Zare S, Shanbedi M et al (2019) The thermophysical properties and the stability of nanofluids containing carboxyl-functionalized graphene nano-platelets and multi-walled carbon nanotubes. Int Commun Heat Mass Transfer 108:104302. https://doi.org/10.1016/j.icheatmasstransfer.2019.104302

    Article  CAS  Google Scholar 

  24. Kashyap A, Singh NP, Arora S et al (2020) Effect of amino-functionalization of MWCNTs on the mechanical and thermal properties of MWCNTs/epoxy composites. Bull Mater Sci 43:43. https://doi.org/10.1007/s12034-019-2012-0

    Article  CAS  Google Scholar 

  25. Chiou Y-C, Chou H-Y, Shen M-Y (2019) Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites. Mater Des 178:107869. https://doi.org/10.1016/j.matdes.2019.107869

    Article  CAS  Google Scholar 

  26. Patnaik S, Gangineni PK, Prusty RK (2020) Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: an emphasis on concentration of nanofillers. Compos Commun 20:100369. https://doi.org/10.1016/j.coco.2020.100369

    Article  Google Scholar 

  27. Aghili M, Yazdi MK, Ranjbar Z, Jafari SH (2021) Anticorrosion performance of electro-deposited epoxy/amine functionalized graphene oxide nanocomposite coatings. Corros Sci 179:109143. https://doi.org/10.1016/j.corsci.2020.109143

    Article  CAS  Google Scholar 

  28. Singh PK, Singh PK, Sharma K, Saraswat M (2020) Effect of sonication parameters on mechanical properties of in-situ amine functionalized multiple layer graphene/epoxy nanocomposites. J Sci Ind Res (JSIR) 79:985–989

    CAS  Google Scholar 

  29. Hou D, Yang Q, Jin Z et al (2021) Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation. Appl Surf Sci 568:150896. https://doi.org/10.1016/j.apsusc.2021.150896

    Article  CAS  Google Scholar 

  30. Guo S-Y, Luo H-H, Tan Z et al (2021) Impermeability and interfacial bonding strength of TiO2-graphene modified epoxy resin coated OPC concrete. Prog Org Coat 151:106029. https://doi.org/10.1016/j.porgcoat.2020.106029

    Article  CAS  Google Scholar 

  31. Zhan W, Fu X, Wang F et al (2020) Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites. J Mater Sci 55:10558–10571. https://doi.org/10.1007/s10853-020-04746-9

    Article  CAS  Google Scholar 

  32. Tiwari N, Shaikh AA (2022) Hybridization of carbon fiber composites with graphene nanoplatelets to enhance interfacial bonding and thermomechanical properties for shape memory applications. Polym Plast Technol Mater 61:161–175. https://doi.org/10.1080/25740881.2021.1967390

    Article  CAS  Google Scholar 

  33. Kallivokas SV, Sgouros AP, Theodorou DN (2020) Kinetic concepts and local failure in the interfacial shear strength of epoxy-graphene nanocomposites. Phys Rev E 102:030501. https://doi.org/10.1103/PhysRevE.102.030501

    Article  CAS  PubMed  Google Scholar 

  34. Olowojoba GB, Eslava S, Gutierrez ES et al (2016) In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl Nanosci 6:1015–1022. https://doi.org/10.1007/s13204-016-0518-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hussein A, Sarkar S, Lee K, Kim B (2017) Cryogenic fracture behavior of epoxy reinforced by a novel graphene oxide/poly(p-phenylenediamine) hybrid. Compos B Eng 129:133–142. https://doi.org/10.1016/j.compositesb.2017.07.085

    Article  CAS  Google Scholar 

  36. Fan J, Yang J, Wang L et al (2021) Enhanced mechanical properties of epoxy nanocomposites with mildly surface-functionalized graphene oxide by tuned amine species. Appl Surf Sci 558:149964. https://doi.org/10.1016/j.apsusc.2021.149964

    Article  CAS  Google Scholar 

  37. Chong HM, Hinder SJ, Taylor AC (2016) Graphene nanoplatelet-modified epoxy: effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms. J Mater Sci 51:8764–8790. https://doi.org/10.1007/s10853-016-0160-9

    Article  CAS  Google Scholar 

  38. Singh NP, Gupta VK, Singh AP, Sapra B (2021) Synergistic effects of graphene nanoplatelets and NH2-MWCNTs on cryogenic mechanical properties of epoxy nanocomposites. Polym Test 94:107032. https://doi.org/10.1016/j.polymertesting.2020.107032

    Article  CAS  Google Scholar 

  39. Tiwari N, Shaikh AA, Malek NI (2022) Modification of the multiphase shape memory composites with functionalized graphene nanoplatelets: enhancement of thermomechanical and interfacial properties. Mater Today Chem 24:100826. https://doi.org/10.1016/j.mtchem.2022.100826

    Article  CAS  Google Scholar 

  40. Wang E, Dong Y, Islam MZ et al (2019) Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos Sci Technol 169:209–216. https://doi.org/10.1016/j.compscitech.2018.11.022

    Article  CAS  Google Scholar 

  41. Jerald Maria Antony G, Raja S, Aruna ST, Jarali CS (2020) Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network. J Mech Behav Biomed Mater 110:103951. https://doi.org/10.1016/j.jmbbm.2020.103951

    Article  CAS  PubMed  Google Scholar 

  42. Sun J, Du L, Scarpa F et al (2021) Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin: a conceptual work. Aerosp Sci Technol 111:106541. https://doi.org/10.1016/j.ast.2021.106541

    Article  Google Scholar 

  43. Lan X, Liu L, Zhang F et al (2020) World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Sci China Technol Sci 63:1436–1451. https://doi.org/10.1007/s11431-020-1681-0

    Article  Google Scholar 

  44. Jape S, Garza M, Ruff J et al (2020) Self-foldable origami reflector antenna enabled by shape memory polymer actuation. Smart Mater Struct 29:115011. https://doi.org/10.1088/1361-665X/abaac2

    Article  CAS  Google Scholar 

  45. Dong Y, Ni Q-Q, Fu Y (2015) Preparation and characterization of water-borne epoxy shape memory composites containing silica. Compos A Appl Sci Manuf 72:1–10. https://doi.org/10.1016/j.compositesa.2015.01.018

    Article  CAS  Google Scholar 

  46. Tiwari N, Shaikh AA (2022) Effect of size and surface area of graphene nanoplatelets on the thermomechanical and interfacial properties of shape memory multiscale composites. Polym Plast Technol Mater 61:1334–1346. https://doi.org/10.1080/25740881.2022.2061864

    Article  CAS  Google Scholar 

  47. Yao Y, Luo Y, Lu H, Wang B (2018) Remotely actuated porous composite membrane with shape memory property. Compos Struct 192:507–515. https://doi.org/10.1016/j.compstruct.2018.03.060

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, N., Shaikh, A.A. Effect of the amine and carboxyl functionalised graphene on the thermomechanical and interfacial properties of the shape memory polymer nanocomposites. Polym. Bull. 80, 11797–11815 (2023). https://doi.org/10.1007/s00289-022-04629-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04629-w

Keywords

Navigation