Skip to main content
Log in

Biodegradation of PLA/CNC composite modified with non-ionic surfactants

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) undergoes degradation through the action of microorganisms and enzymes that can degrade it by composting. The goal of this work was to observe the degradation/disintegration behavior in garden soil of neat PLA and PLA composites with 3 wt% cellulose nanocrystals (CNC) modified or not with non-ionic surfactants (S) at a weight ratio of 1:1 (CNC:S). Four types of non-ionic surfactants with hydrophilic-lipophilic balance (HLB) ranging from 4.3 to 16.7 were tested: sorbitan monolaurate (Span 20), sorbitan monooleate (Span 80), polyoxyethylene sorbitan monolaurate (Tween 20) and polyoxyethylene sorbitan monooleate (Tween 80). Films were obtained by solution casting, cut into 2 × 2 cm strips and buried in garden soil, while monitoring the temperature and humidity for 150 days. Changes in the films by visual inspection, polarized light microscopy, thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) were observed. Results showed that the addition of surfactants favored the rate of biodegradation of the composites, being the lowest molecular weight the determinant property of the surfactant to enhance biodegradation rate of PLA/CNC/S composites. Nevertheless, for surfactants belonging to the same chemical family, the highest biodegradation rate for PLA/CNC/S composite obeys the principle of high HLB, and low spherulite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Sigma-Aldrich

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lima RMR, Romeiro Filho E (2003) The ergonomics analysis contribution for the product project directed towards recycling. Rev Prod 13(2):82–87 (in portuguese)

    Article  Google Scholar 

  2. Franchetti SMM, Marconato JC (2006) Biodegradable polymers—a partial way for decreasing the amount of plastic waste. Quím Nova 29(4):811–816 (in portuguese)

    Article  CAS  Google Scholar 

  3. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Microstructure analysis of polylactic acid-based composites during degradation in soil. Int Biodeterior Biodegrad 122:53–60

    Article  CAS  Google Scholar 

  4. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Comp Sci Technol 69(7–8):1187–1192

    Article  CAS  Google Scholar 

  5. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Comp Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  6. Garlotta DA (2001) Literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  7. Lemos AL, Martins RM (2014) Development and characterization of polymeric composites based on poly(lactic acid) and natural fibers. Polimeros 24:190–197 (in portuguese)

    Article  Google Scholar 

  8. Morelli CL, Marconcini JM, Pereira FV, Bretas RES, Branciforti MC (2012) Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromol Symp 319(1):191–195

    Article  CAS  Google Scholar 

  9. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114

    Article  CAS  PubMed  Google Scholar 

  10. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77–91

    Article  CAS  Google Scholar 

  11. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  12. Emami Z, Meng Q, Pircheraghi G, Manas-Zloczower I (2015) Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose 22:3161–3176

    Article  CAS  Google Scholar 

  13. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-Nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212

    Article  CAS  Google Scholar 

  14. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036

    Article  CAS  Google Scholar 

  15. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of celulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  16. Gois GS, Nepomuceno NC, França CHA, Almeida YMB, Hernandéz EP, Oliveira JE, Oliveira MP, Medeiros ES, Santos ASF (2019) Influence of morphology and dispersion stability of CNC modified with ethylene oxide derivatives on mechanical properties of PLA-based nanocomposites. Polym Comp 40:E399–E408. https://doi.org/10.1002/pc.24704

    Article  CAS  Google Scholar 

  17. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265

    Article  CAS  PubMed  Google Scholar 

  18. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Comp Interfaces 14(7–9):617–630

    Article  CAS  Google Scholar 

  19. Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061

    Article  CAS  Google Scholar 

  20. Silviya EK, Unnikrishnan G, Varghese S, Guthrie JT (2013) Surfactant effects on poly(ethylene-co-vinyl acetate)/cellulose composites. Comp Part B Eng 47:137–144

    Article  CAS  Google Scholar 

  21. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    Article  CAS  Google Scholar 

  22. Li Z, Hu X, Shi J, Zou X, Huang X, Zhou X et al (2016) Bacteria counting method based on polyaniline/bacteria thin film. Biosens Bioelectron 81:75–79

    Article  CAS  Google Scholar 

  23. Szabo JG, Meiners G, Heckman L, Rice EW, Hall J (2017) Decontamination of Bacillus spores adhered to iron and cement mortar drinking water infrastructure in a model system using disinfectants. J Environ Manag 187:1–7

    Article  CAS  Google Scholar 

  24. Arrieta MP, López J, López D, Kenny JM, Peponi L (2015) Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties. Eur Polym J 73:433–446

    Article  CAS  Google Scholar 

  25. Haque MM, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9

    Article  CAS  Google Scholar 

  26. Souza PMS, Morales AR, Mei LHI, Morales MAM (2014) Estudo da influência de argilas organofílicas no processo de biodegradação do PLA. Polimeros 24(1):110–116 (in portuguese)

    Article  CAS  Google Scholar 

  27. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33(3):648–658

    Article  CAS  Google Scholar 

  28. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  29. Gois GS, Andrade MF, Garcia SMS, Vinhas GM, Santos ASF, Medeiros ES, Oliveira JE, Almeida YMB (2017) Soil biodegradation of PLA/CNW nanocomposites modified with ethylene oxide derivatives. Mat Res 20(Suppl. 2):899–904. https://doi.org/10.1590/1980-5373-MR-2016-0960

    Article  Google Scholar 

  30. Arrieta MP, López J, Rayón E, Jiménez A (2014) Disintegrability under composting conditions of plasticized PLA-PHB blends. Polym Degrad Stab 108:307–318

    Article  CAS  Google Scholar 

  31. Dolores SM, Patricia AM, Santiago F, Juan L (2014) Influence of biodegradable materials in the recycled polystyrene. J Appl Polym Sci 131(23):1–7

    Article  Google Scholar 

  32. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  PubMed  Google Scholar 

  33. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  CAS  PubMed  Google Scholar 

  34. Gois GS (2018) Investigation of biodegradable composites based on poly(lactic acid) with cellulose nanocrystals modified with dicumyl peroxide and surfactants. PhD thesis, Federal University of Pernambuco (in portuguese). https://repositorio.ufpe.br/bitstream/123456789/31935/1/TESE%20Gelsoneide%20da%20Silva%20Gois.pdf

  35. Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym Degrad Stab 121:105–115

    Article  CAS  Google Scholar 

  36. Gu J-D, Ford T, Thorp K, Mitchell R (1996) Microbial growth on fiber reinforced composite materials. Int Biodeterior Biodegrad 37:197203

    Article  Google Scholar 

  37. Drumond WS, Wang SH, Mothé CG (2004) Synthesis and characterization of copoly(lactic acid-b-ethylene glycol). Polím Cienc Tecnol 14(2):74–79 (in portuguese)

    Article  CAS  Google Scholar 

  38. Latos-Brozio M, Masek A (2020) The effect of natural additives on the composting properties of aliphatic polyesters. Polymers 12(9):1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zain AHM, Ab Wahab MK, Ismail H (2018) Biodegradation behaviour of thermoplastic starch: the roles of carboxylic acids on cassava starch. J Polym Environ 26:691–700

    Article  CAS  Google Scholar 

  40. Salazar-Sánchez MR, Campo-Erazo SD, Villada-Castillo HS, Solanilla-Duque JF (2019) Structural changes of cassava starch and polylactic acid films submitted to biodegradation process. Int J Biol Macromol 129:442–447

    Article  Google Scholar 

  41. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7(3):255–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Foundation for Science and Technology of the State of Pernambuco (FACEPE) for their financial support of this study. Thanks are also due to the Biomaterials and Biosystems Laboratory (LAMAB/UFPB) and Polymer Materials and Characterization Laboratory (LMPC/UFPE) for sample characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélia Severino Ferreira Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gois, G., Santos, A., Hernandéz, E. et al. Biodegradation of PLA/CNC composite modified with non-ionic surfactants. Polym. Bull. 80, 11363–11377 (2023). https://doi.org/10.1007/s00289-022-04618-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04618-z

Keywords

Navigation