Skip to main content
Log in

Fabrication of conductive hybrid scaffold based on polyaniline/polyvinyl alcohol–chitosan nanoparticles for skin tissue engineering application

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The current assignment describes on the integration of chitosan nanoparticles in the polymeric matrix of polyaniline (PANI)—polyvinyl alcohol (PVA) resulted in the successful fabrication of a novel bionanocomposite. The cost-effective and easy ionic gelation procedure was used to synthesize chitosan nanoparticles (CNPs) and transmission electron microscopy analysis presented the spherical shape with a nano-regimen below 47 nm of CNPs. The Fourier transform infrared spectroscopy results highlighted the distinctive functional groups and chemical interactions associated with chitosan nanoparticles and the polyaniline–polyvinyl alcohol matrix. The integration of chitosan nanoparticles had an effect on the amorphous character of the synthesized bionanocomposite, according to X-ray diffraction studies. The surface morphology was revealed by field emissions scanning electron microscopy pictures, and thermo-gravimetric analysis revealed that the inclusion of chitosan nanoparticles improved thermal stability. Cyclic voltammetry is used to determine the electroactivity of a synthesized material. The antibacterial activity of bionanocomposite was tested against Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus, as well as Gram-negative bacteria salmonella typhi and Escherichia coli. The highest antibacterial activity of all the bacterial strains was at 13 mm, 10.9 mm, 15 mm, and 17 mm, respectively. The synergistic effect of PANI-PVA-CNPs, as evidenced by its mechanical properties, swelling ratio, and percentage of porosity results, supported that the addition of CNPs to PANI-PVA enhanced the values suitable for the regeneration of skin tissues. The in vitro hemolytic study demonstrated the hemocompatibility value was less than 2%, implying that the bionanocomposite has the potential to be used as an efficient material in skin tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11(10):1775–1781

    Article  CAS  PubMed  Google Scholar 

  2. Shafiee A, Atala A (2017) Tissue engineering: toward a new era of medicine. Annu Rev Med 68:29–40

    Article  CAS  PubMed  Google Scholar 

  3. Sharma K, Mujawar MA, Kaushik A (2019) State-of-art functional biomaterials for tissue engineering. Front Mater 6:1–10

    Article  CAS  Google Scholar 

  4. Gaaz TS, Sulong AB, Akhtar MN et al (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20:22833–22847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei Q, Zhang Y, Wang Y, Yang M (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52:12889–12901

    Article  CAS  Google Scholar 

  6. Wang XH et al (2015) Preparation of PANI–PVA composite film with good conductivity and strong mechanical property. Plast Rubber Compos 44(8):345–349

    Article  CAS  Google Scholar 

  7. Kanimozhi K et al (2019) Development and characterization of sodium alginate/poly (vinyl alcohol) blend scaffold with ciprofloxacin loaded in controlled drug delivery system. J Nanosci Nanotechnol 19(5):2493–2500

    Article  CAS  PubMed  Google Scholar 

  8. Kanimozhi K, Basha SK, Kaviyarasu K, SuganthaKumari V (2019) Salt leaching synthesis, characterization and in vitro cytocompatibility of chitosan/poly (vinyl alcohol)/methylcellulose–ZnO nanocomposites scaffolds using L929 fibroblast cells. J Nanosci Nanotechnol 19(8):4447–4457

    Article  CAS  PubMed  Google Scholar 

  9. Kanimozhi K et al (2018) In vitro cytocompatibility of chitosan/PVA/methylcellulose–Nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl Surf Sci 449:574–583

    Article  CAS  Google Scholar 

  10. Kanimozhi K et al (2018) Development of biomimetic hybrid porous scaffold of chitosan/polyvinyl alcohol/carboxymethyl cellulose by freeze-dried and salt leached technique. J Nanosci Nanotechnol 18(7):4916–4922

    Article  CAS  PubMed  Google Scholar 

  11. Lashkenari MS, Eisazadeh H (2016) Enhanced functionality of colloidal polyaniline/polyvinyl alcohol nanocomposite as an antibacterial agent. J Vinyl Add Tech 22(3):267–272

    Article  CAS  Google Scholar 

  12. Sai S, Kumar A (2020) Synthesis and morphological study of polyaniline. Eur. J. Mol. Clin. Med. 07:3848–3852

    Google Scholar 

  13. Liu R, Zhang S, Zhao C et al (2021) Regulated surface morphology of polyaniline/polylactic acid composite nanofibers via various inorganic acids doping for enhancing biocompatibility in tissue engineering. Nanoscale Res Lett. https://doi.org/10.1186/s11671-020-03457-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Humpolíček P, Anna K, Capáková Z et al (2018) Polyaniline cryogels : biocompatibility of novel conducting macroporous material. Sci Rep 8:1–12

    Article  Google Scholar 

  15. Zarrintaj P, Rezaeian I, Bakhshandeh B et al (2017) Bio—conductive scaffold based on agarose—polyaniline for tissue engineering. J Skin Stem Cell 4:4–7

    Google Scholar 

  16. Bertuoli PT, Ordono J, Armelin E et al (2019) Electrospun conducting and biocompatible uniaxial and core-shell fibers having poly(lactic acid), poly(ethylene glycol), and polyaniline for cardiac tissue engineering. ACS Omega 4:3660–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harris AR, Wallace GG (2018) Organic electrodes and communications with excitable cells. Adv Func Mater 28(12):1700587

    Article  Google Scholar 

  18. Qazi TH, Rai R, Boccaccini AR (2014) Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33):9068–9086

    Article  CAS  PubMed  Google Scholar 

  19. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602

    Article  CAS  Google Scholar 

  20. Li J, Zhuang S (2020) Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polymer J 138:109984

    Article  CAS  Google Scholar 

  21. Chang PR et al (2010) Fabrication and characterisation of chitosan nanoparticles/plasticisedstarch composites. Food Chem 120(3):736–740

    Article  CAS  Google Scholar 

  22. Choi C, Nam JP, Nah JW (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10

    Article  CAS  Google Scholar 

  23. Bhadra J, Sarkar D (2010) Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite. Indian J Phys 84(6):693–697

    Article  Google Scholar 

  24. Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7(5):846–855

    Article  CAS  Google Scholar 

  25. Samzadeh-Kermani A, Mirzaee M, Ghaffari-Moghaddam M (2016) Polyvinyl alcohol/polyaniline/ZnO nanocomposite: synthesis, characterization and bactericidal property. Adv Biol Chem 6(01):1

    Article  Google Scholar 

  26. Sugita P, Ambarsari L (2015) Optimization of ketoprofen-loaded chitosan nanoparticle ultrasonication process. Procedia Chem 16:673–680

    Article  CAS  Google Scholar 

  27. Poonguzhali R, Basha SK, Kumari VS (2017) Synthesis and characterization of chitosan/poly (vinylpyrrolidone) biocomposite for biomedical application. Polym Bull 74(6):2185–2201

    Article  CAS  Google Scholar 

  28. Gomathi T et al (2017) Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int J Biol Macromol 104:1820–1832

    Article  CAS  PubMed  Google Scholar 

  29. Ma Q et al (2017) Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll 63:677–684

    Article  CAS  Google Scholar 

  30. Liu Y et al (2019) Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos A Appl Sci Manuf 117:134–143

    Article  CAS  Google Scholar 

  31. Wang S et al (2019) Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method. Chem Eng J 370:322–329

    Article  CAS  Google Scholar 

  32. Silva ALC et al (2018) Synthesis and characterization of nanocomposites consisting of polyaniline, chitosan and tin dioxide. Mater Chem Phys 216:402–412

    Article  CAS  Google Scholar 

  33. Divya K et al (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18(2):221–230

    Article  CAS  Google Scholar 

  34. Anand M et al (2018) Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Front Lab Med 2(2):72–78

    Article  Google Scholar 

  35. Deshkulkarni, Bharat, et al., (2018). "Humidity sensing using polyaniline/polyvinyl alcohol nanocomposite blend." In: IOP conference series: materials science and engineering. Vol. 376. No. 1

  36. Chen Z et al (2020) Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J Mater Sci Mater Electron 31(8):5958–5965

    Article  CAS  Google Scholar 

  37. Soliman TS, Vshivkov SA (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non-Cryst Solids 519:119452

    Article  CAS  Google Scholar 

  38. Bousalem S et al (2020) Physical and electrochemical investigations on hybrid materials synthesized by polyaniline with various amounts of ZnO nanoparticle. Chem Phys Lett 741:137095

    Article  Google Scholar 

  39. Ullah R et al (2018) Ternary composites of polyaniline with polyvinyl alcohol and Cu by inverse emulsion polymerization: a comparative study. Adv Polym Technol 37(8):3448–3459

    Article  CAS  Google Scholar 

  40. Nalini T et al (2019) Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation. J Drug Deliv Sci Technol 52:65–72

    Article  CAS  Google Scholar 

  41. Rahman G et al (2019) Nickel oxide-incorporated polyaniline/polyvinyl alcohol composite for enhanced antibacterial activity. Z Phys Chem 233(9):1261–1274

    Article  CAS  Google Scholar 

  42. Agarwal M et al (2018) Preparation of chitosan nanoparticles and their in-vitro characterization. Int J Life Sci Scienti Res 4(2):1713–1720

    Article  Google Scholar 

  43. Shahadat M et al (2017) A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Coll Interface Sci 249:2–16

    Article  CAS  Google Scholar 

  44. Deng SH, Wang Y, Yang X (2018) The study of electrochemical synthesis, properties and composite mechanism of PANI/PVA and PANI/PVA/Ag composite films. Pigment Resin Technol 47(133):141

    Google Scholar 

  45. Nieuwenhove V, Ine, et al (2017) Soft tissue fillers for adipose tissue regeneration: from hydrogel development toward clinical applications. Acta Biomater 63:37–49

    Article  PubMed  Google Scholar 

  46. Christy PN, Basha SK, Kumari VS (2022) Nano zinc oxide and nano bioactive glass reinforced chitosan/poly (vinyl alcohol) scaffolds for bone tissue engineering application. Mater Today Comms 31:103429

    Article  CAS  Google Scholar 

  47. Rodríguez- Rodríguez R et al (2019) Development of gelatin/chitosan/PVA hydrogels: thermal stability, water state, viscoelasticity, and cytotoxicity assays. J Appl Polym Sci 136(10):47149

    Article  Google Scholar 

  48. Katas H, Hussain Z, Ling TC (2012) Chitosan nanoparticles as a percutaneous drug delivery system for hydrocortisone. J Nanomater 2012(1):11

    Google Scholar 

  49. Hu Z, Hong P, Liao M, Kong S, Huang N, Ou C, Li S (2016) Preparation and characterization of Chitosan—Agarose composite films. Materials 9(10):816

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rajasree SRR et al (2020) Fabrication and characterization of chitosan based collagen/gelatin composite scaffolds from big eye snapper priacanthus hamrur skin for antimicrobial and anti oxidant applications. Mater Sci Eng C 107:110270

    Article  Google Scholar 

  51. Poth N et al (2015) Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 5(1):3–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park SH (2016) Diagnosis and treatment of autoimmune hemolytic anemia: classic approach and recent advances. Blood Res 51(2):69–71

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thariga Shankar et al (2019) In vitro evaluation of biodegradable nHAP-Chitosan-Gelatin-based scaffold for tissue engineering application. IET Nanobiotechnology 13(3):301–306

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vieira T et al (2019) Electrospun biodegradable chitosan based-poly (urethane urea) scaffolds for soft tissue engineering. Mater Sci Eng C 103:109819

    Article  CAS  Google Scholar 

  55. Bandara Subhani et al (2020) Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials 10(10):1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanimozhi K, Khaleel Basha S, Sugantha Kumari V (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng C 61:484–491

    Article  CAS  Google Scholar 

  57. Shamloo A et al (2021) Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm 592:120068

    Article  CAS  PubMed  Google Scholar 

  58. Mhatre A et al (2021) Chitosan/gelatin/PVA membranes for mammalian cell culture.". Carbohydr Polym Technol Appl. 2:100163

    CAS  Google Scholar 

  59. Poonguzhali R, Basha SK, Kumari VS (2018) Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int J Biol Macromol 114:204–213

    Article  CAS  PubMed  Google Scholar 

  60. Arteshi Y et al (2018) Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation. Eur Polymer J 108:150–170

    Article  CAS  Google Scholar 

  61. Thandapani G et al (2017) Size optimization and in vitro biocompatibility studies of chitosan nanoparticles. Int J Biol Macromol 104:1794–1806

    Article  CAS  PubMed  Google Scholar 

  62. Poonguzhali R, Khaleel Basha S, Sugantha Kumari V (2018) Nanostarch reinforced with chitosan/poly (vinyl pyrrolidone) blend for in vitro wound healing application. Polym Plast Technol Eng 57.14:1400–1410

    Article  Google Scholar 

  63. Poonguzhali R, Khaleel Basha S, Sugantha Kumari V (2017) Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int J Biol Macromol 105:111–120

    Article  CAS  PubMed  Google Scholar 

  64. Yim EKF, Liao I-C, Leong KW (2007) Tissue compatibility of interfacial polyelectrolyte complexation fibrous scaffold: evaluation of blood compatibility and biocompatibility. Tissue Eng 13.2:423–433

    Article  Google Scholar 

  65. Bhowmick A et al (2017) Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol 95:348–356

    Article  CAS  PubMed  Google Scholar 

  66. Weida C et al (2021) Allicinloaded chitosan polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds an in vitro and in vivo study. J Drug Deliv Sci Technol 65:102734

    Article  Google Scholar 

  67. Kucekova Z et al (2014) Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf B 116:411–417

    Article  CAS  Google Scholar 

  68. Alqahtani F et al (2020) "Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int J Nanomed 15:7877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Auxilium College Management, Tamil Nadu, India, for providing the necessary laboratory facilities for the research work. The authors would like to acknowledge Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Kochi, Kerala and Sophisticated Analytical Instrumentations Facility (SAIF), IIT Madras, for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sugantha Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 413 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Switha, D., Basha, S.K. & Kumari, V.S. Fabrication of conductive hybrid scaffold based on polyaniline/polyvinyl alcohol–chitosan nanoparticles for skin tissue engineering application. Polym. Bull. 80, 11439–11467 (2023). https://doi.org/10.1007/s00289-022-04616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04616-1

Keywords

Navigation