Skip to main content
Log in

Modification and characterization of TFC membranes with Ag nanoparticles: application in seawater desalination

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New composite membranes were developed and characterized for application in reverse osmosis. A commercial TFC membrane surface was modified, impregnating with Ag nanoparticles (AgNP) (5 mg, 10 mg and 15 mg per 100 mL DI water) via interfacial polymerization to improve biofouling resistance. The effects on permeate flow, operating pressure and salt rejection were assessed, with rejections of 97.6%, 97.8% and 96.7% using 5 mg, 10 mg and 15 mg, respectively. The contact angle for the 10 mg AgNP membrane (39.01 ± 4.43) showed higher hydrophilicity (> 19%) than the commercial BW30XFR membrane. Infrared spectroscopy results showed membrane modifications by signals at 1717 cm−1 and 1616 cm−1 indicating a new layer of polyamide. AFM, SEM and EDS results determined an agglomerate size for the 10 mg AgNP membrane of 3.93 µm ± 0.93 and 169.9 nm RMS roughness. The anti-biofouling properties of modified membranes were tested against Bacillus halotolerans MCC1. The results showed a highly significant reduction of biofilm cake layer, total cells, and total organic carbon on the surface of the modified membranes (72%, 48% and 45% lower) using 5 mg, 10 mg and 15 mg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vallino E, Ridolfi L, Laio F (2020) Measuring economic water scarcity in agriculture: a cross-country empirical investigation. Environ Eng Policy 114:73–85. https://doi.org/10.1016/j.envsci.2020.07.017

    Article  Google Scholar 

  2. Ortega-Gaucin D (2018) Medidas para afrontar la sequía en México: una visión retrospectiva. Revista de El Colegio de San Luis 8(15):77–105

    Article  Google Scholar 

  3. Dévora-Isiordia GE, Encinas-Guzmán MI, Rodríguez-López J, Robles-lizarraga A, Correa Díaz F (2021) Assessment of fixed, single-axis, and dual-axis photovoltaic systems applied to a reverse osmosis desalination process in northwest Mexico. Desalin Water Treat 234(1):399–407. https://doi.org/10.5004/dwt.2021.27614

    Article  CAS  Google Scholar 

  4. Ansari A, Peña-Bahamonde J, Wang M, Shaffer DL, Hu Y, Rodrigues DF (2021) Polyacrylic acid-brushes tethered to graphene oxide membrane coating for scaling and biofouling mitigation on reverse osmosis membranes. J Membr Sci 630:119308–119318. https://doi.org/10.1016/j.memsci.2021.119308

    Article  CAS  Google Scholar 

  5. Sun PF, Jang Y, Ham SY, Ryoo H, Park HD (2021) Effects of reverse solute diffusion on membrane biofouling in pressure-retarded osmosis processes. Desalination 512:115145–115157. https://doi.org/10.1016/j.desal.2021.115145

    Article  CAS  Google Scholar 

  6. Firouzjaei MD, Seyedpour SF, Aktij SA, Giagnorio M, Bazrafshan N, Mollahosseini A, Rahimpour A (2020) Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Membr Sci 596:117604–117639. https://doi.org/10.1016/j.memsci.2019.117604

    Article  CAS  Google Scholar 

  7. Fan G, Chen C, Chen X, Li Z, Bao S, Luo J, Tang D, Yan Z (2021) Enhancing the antifouling and rejection properties of PVDF membrane by Ag3PO4-GO modification. Sci Total Environ 801:149611–149622. https://doi.org/10.1016/j.scitotenv.2021.149611

    Article  CAS  PubMed  Google Scholar 

  8. Yang S, Wang J, Wang Y, Ding Y, Zhang W, Liu F (2021) Interfacial polymerized polyamide nanofiltration membrane by demulsification of hexane-in-water droplets through hydrophobic PTFE membrane: membrane performance and formation mechanism. Sep Purif Technol 275:119227–119237. https://doi.org/10.1016/j.seppur.2021.119227

    Article  CAS  Google Scholar 

  9. Qi L, Jiang T, Liang R, Qin W (2021) Polymeric membrane ion-selective electrodes with anti-biofouling properties by surface modification of silver nanoparticles. Sens Actuators B 328:129014–129022. https://doi.org/10.1016/j.snb.2020.129014

    Article  CAS  Google Scholar 

  10. El-GendiA SFA, IsmailN E-D, L AN, (2018) Synergistic role of Ag nanoparticles and Cu nanorods dispersed on graphene on membrane desalination and biofouling. J Ind Eng Chem 65:127–136. https://doi.org/10.1016/j.jiec.2018.04.021

    Article  CAS  Google Scholar 

  11. Istirokhatun T, Lin Y, Shen Q, Guan K, Wang S, Matsuyama H (2022) Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. J Membr Sci 645:120196–120206. https://doi.org/10.1016/j.memsci.2021.120196

    Article  CAS  Google Scholar 

  12. Qin Y, Liu H, Liu Y, Chen M, Chen K, Huang Y, Xiao C (2020) Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure. J Membr Sci 604:118064–118077. https://doi.org/10.1016/j.memsci.2020.118064

    Article  CAS  Google Scholar 

  13. Yu C, Li H, Zhang X, Lü Z, Yu S, Liu M, Gao C (2018) Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance. J Membr Sci 566:87–95. https://doi.org/10.1016/j.memsci.2018.09.012

    Article  CAS  Google Scholar 

  14. Li Q, Pan X, Qu Z, Zhao X, Jin Y, Dai H, Wang X (2013) Understanding the dependence of contact angles of commercially RO membranes on external conditions and surface features. Desalination 309:38–45. https://doi.org/10.1016/j.desal.2012.09.007

    Article  CAS  Google Scholar 

  15. Bulbul YE, Uzunoglu T, Dilsiz N, Yildirim E, Ates H (2020) Investigation of nanomechanical and morphological properties of silane-modified halloysite clay nanotubes reinforced polycaprolactone bio-composite nanofibers by atomic force microscopy. Polym Test 92:106877–106888. https://doi.org/10.1016/j.polymertesting.2020.106877

    Article  CAS  Google Scholar 

  16. Sinitsyna OV, Vorob’ev MM (2021) Atomic force microscopy characterization of β-casein nanoparticles on mica and graphite. Mendeleev Commun 31(1):88–90. https://doi.org/10.1016/j.mencom.2021.01.027

    Article  CAS  Google Scholar 

  17. Armendáriz-Ontiveros MM, Álvarez-Sánchez J, Dévora-Isiordia GE, García A, Fimbres Weihs GA (2020) Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs). Chem Eng Sci 223:115753–211563. https://doi.org/10.1016/j.ces.2020.115753

    Article  CAS  Google Scholar 

  18. Armendáriz-Ontiveros MM, García García A, de los Santos Villalobos S, Fimbres Weihs GA (2019) Biofouling performance of RO membranes coated with Iron NPs on graphene oxide. Desalination 451:45–58. https://doi.org/10.1016/j.desal.2018.07.005

    Article  CAS  Google Scholar 

  19. Pérez-Sicairos SS, Miranda-Ibarra SA, Lin-Ho SW, Álvarez-Sánchez J, Pérez-Reyes JC, Corrales-López KA, Morales-Cuevas JB (2016) Membranas de nanofiltración, preparadas vía polimerización en interfase, dopadas con nanopartículas de ZnO: efecto en su desempeño. Rev Mex Ing Quim 15(3):961–975

    Article  Google Scholar 

  20. Rodríguez BE, Armendariz-Ontiveros MA, Quezada R, Huitrón-Segovia EA, Estay H, García García A, García A (2020) Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and oxidation degree. Polymers 12(12):2860–2884. https://doi.org/10.3390/polym12122860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Armendariz Ontiveros MM, Quintero Y, Llanquilef A, Morel M, Argentel Martínez L, García García A, Garcia A (2019) Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles. Materials 12(2081):1–12. https://doi.org/10.3390/ma12132081

    Article  CAS  Google Scholar 

  22. Armendáriz-Ontiveros MM, Fimbres Weihs GA, de los Santos Villalobos S, Salinas Rodriguez SG (2019) Biofouling of FeNP-coated SWRO membranes with bacteria isolated after pre-treatment in the sea of cortez. Coatings 9(7):462–474. https://doi.org/10.3390/coatings9070462

    Article  CAS  Google Scholar 

  23. Drioli E, Criscuoli A, Macedonio F (2011) Membrane-based desalination: an integrated approach (MEDINA). Water Intell Online 10:9781780400914. https://doi.org/10.2166/9781780400914

    Article  Google Scholar 

  24. Álvarez-Sánchez J, Encinas-Meneses E, Pérez-Sicairos S, Ríos-Vazquez NJ, Dévora-Isiordia GE, González-Enríquez R (2014) Preparación y caracterización de membranas compuestas elaboradas a partir de 2, 4, 6 trimetil m-fenilendiamina y cloruro de trimesoílo. Revista Iberoamericana de Ciencias 1(7):123–136

    Google Scholar 

  25. Li Y, Su Y, Dong Y, Zhao X, Jiang Z, Zhang R, Zhao J (2014) Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination 333(1):59–65. https://doi.org/10.1016/j.desal.2013.11.035

    Article  CAS  Google Scholar 

  26. Nam-Wun Oh, Jegal J, Lee K-H (2001) Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. preparation and characterization of polyamide composite membranes. J Appl Polym Sci 80(14):2729–2736. https://doi.org/10.1002/app.1387

    Article  Google Scholar 

  27. Pavia DP, Lampman GM, Kriz GS, Vyvyan JR. Introduction the spectroscopy. 4th (ed) New York, Cengage Learning

  28. Carey FA (2007) Química orgánica, 6ta Ed. McGraw-Hill interamericana de España S.L.

  29. Álvarez-Sánchez J, Romero-López GE, Pérez-Sicairos S, Devora-Isiordia GE, Sánchez-Duarte RG, Fimbres-Weihs GA (2018) Development, characterization, and applications of capsaicin composite nanofiltration membranes. In: Eyvaz M, Yüksel E (eds) Desalination and water treatment. InTech. https://doi.org/10.5772/intechopen.76846

    Chapter  Google Scholar 

  30. Do VT, Tang CY, Reinhard M, Leckie JO (2012) Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ Sci Technol 46(2):852–859. https://doi.org/10.1021/es203090y

    Article  CAS  PubMed  Google Scholar 

  31. Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273(1):72–80. https://doi.org/10.1016/j.desal.2010.11.010

    Article  CAS  Google Scholar 

  32. Zhang Y, Wan Y, Shi Y, Pan G, Yan H, Xu J, Liu Y (2016) Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J Polym Res 23(5):105–114. https://doi.org/10.1007/s10965-016-0992-7

    Article  CAS  Google Scholar 

  33. Huang J, Wang H, Zhang K (2014) Modification of PES membrane with Ag–SiO2: reduction of biofouling and improvement of filtration performance. Desalination 336:8–17. https://doi.org/10.1016/j.desal.2013.12.032

    Article  CAS  Google Scholar 

  34. Esmailpour AA, Mostoufi N, Zarghami R (2018) Effect of temperature on fluidization of hydrophilic and hydrophobic nanoparticle agglomerates. Exp Therm Fluid Sci 96:63–74. https://doi.org/10.1016/j.expthermflusci.2018.02.028

    Article  CAS  Google Scholar 

  35. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes. Biochim Biophys Acta 27:229–246. https://doi.org/10.1016/0006-3002(58)90330-5

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Liu X, Lu J, Wang Y, Li G, Zhao F (2016) Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. J Colloid Interface Sci 484:107–115. https://doi.org/10.1016/j.jcis.2016.08.063

    Article  CAS  PubMed  Google Scholar 

  37. Çengel YA, Boles MA (2012) Termodinámica. McGraw-Hill, Séptima edición, México

    Google Scholar 

  38. Geankoplis CJ (2006) Procesos de transporte y principios de procesos de separación. CECSA, Cuarta edición, Impreso en Tijuana

    Google Scholar 

  39. Tian J, Chang H, Gao S, Zhang R (2020) How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC. Desalination 491:114499–114509. https://doi.org/10.1016/j.desal.2020.114499

    Article  CAS  Google Scholar 

  40. Secretaria de salud (1994). Norma oficial Mexicana, Salud Ambiental. Agua para uso y consumo humano-limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion. NOM-127-SSA1–1994. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69543.pdf. Accessed 22 October 2021

  41. Hirsch UM, Teuscher N, Rühl M, Heilmann A (2019) Plasma-enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf Interfaces 16:1–7. https://doi.org/10.1016/j.surfin.2019.04.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding provided by CONACYT, grant number 000000000206002, the PRODEP Program (Project PROMEP/103.5/12/3720) and by the Instituto Tecnológico de Sonora through a PROFAPI_2019_0055 fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Álvarez-Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Valenzuela, P.G., Álvarez-Sánchez, J., Dévora-Isiordia, G.E. et al. Modification and characterization of TFC membranes with Ag nanoparticles: application in seawater desalination. Polym. Bull. 80, 6285–6306 (2023). https://doi.org/10.1007/s00289-022-04360-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04360-6

Keywords

Navigation