Skip to main content
Log in

Bio-based poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate): synthesis, thermal properties, crystallization properties and mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of the study was to study the effect of cheap bio-based monomer 2,5-thiophenedicarboxylic acid on poly(butylene furandicarboxylate). Bio-based copolyesters were successfully synthesized by two-step melt polycondensation using 2,5-thiophenedicarboxylic acid (TDCA), 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol (BDO). Compared with FDCA, the price of TDCA is lower. The main purpose of this study is to add different amounts of TDCA to reduce the cost of polyester and to investigate the effect of TDCA on the properties of poly(butylene furandicarboxylate) (PBF). It can be determined that the expected copolymers were indeed synthesized by FTIR and 1H NMR spectra. DSC and WAXD results suggested that PBFTF27, PBFTF51 and PBFTF77 show isodimorphism behaviors. Because the angle between two carboxyl groups in TDCA is larger than that of FDCA, and the electronegativity of sulfur atom is weaker than that of oxygen atom, the glass transition temperature decreases due to the increase in the flexibility of the chain with the increase in TDCA. Compared with PBF, the toughness of poly(butylene 2,5-thiophenedicarboxylate) (PBTF) and copolyesters increased significantly. Poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate) can be used in the packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4.
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116(3):1637–1669

    Article  CAS  PubMed  Google Scholar 

  2. Wang GQ, Jiang M, Zhang Q, Wang R, Liang QD, Wang HH, Zhou GY (2019) Partially bio-based and tough polyesters, poly(ethylene 2,5-thiophenedicarboxylate-co-1,4-cyclohexanedimethylene 2,5-thiophenedicarboxylate)s. Express Polym Lett 13:938–947

    Article  CAS  Google Scholar 

  3. Wang G, Song J (2021) Synthesis and characterization of bio-based polyesters derived from 1,10-decanediol. J Appl Polym Sci 138(39):51163

    Article  CAS  Google Scholar 

  4. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17(1):40–71

    Article  CAS  Google Scholar 

  5. Jain A, Jonnalagadda SC, Ramanujachary KV, Mugweru A (2015) Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal Commun 58:179–182

    Article  CAS  Google Scholar 

  6. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem Rev 113(3):1499–1597

    Article  PubMed  Google Scholar 

  7. Desroches M, Benyahya S, Besse V, Auvergne R, Boutevin B, Caillol S (2014) Synthesis of bio-based building blocks from vegetable oils: A platform chemicals approach. Lipid Technol 26(2):35–38

    Article  CAS  Google Scholar 

  8. S Natesan, JS Samuel, AK Srinivasan (2021) Design and development of Schiff’s base (SB)-modified polylactic acid (PLA) antimicrobial film for packaging applications. Polym Bull

  9. N More, M Avhad, S Utekar, A More (2022) Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull

  10. Garcia-Campo MJ, Quiles-Carrillo L, Sanchez-Nacher L, Balart R, Montanes N (2019) High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polym Bull 76(4):1839–1859

    Article  CAS  Google Scholar 

  11. Adorna JA, Ventura RLG, Dang VD, Doong R-A, Ventura J-RS (2022) Biodegradable polyhydroxybutyrate/cellulose/calcium carbonate bioplastic composites prepared by heat-assisted solution casting method. J Appl Polym Sci 139(7):51645

    Article  Google Scholar 

  12. Mokhena TC, Sadiku ER, Ray SS, Mochane MJ, Motaung TE (2021) The effect of expanded graphite/clay nanoparticles on thermal, rheological, and fire-retardant properties of poly(butylene succinate). Polym Compos 42(12):6370–6382

    Article  CAS  Google Scholar 

  13. Hallstein J, Gomoll A, Lieske A, Büsse T, Balko J, Brüll R, Malz F, Metzsch-Zilligen E, Pfaendner R, Zehm D (2021) Unraveling the cause for the unusual processing behavior of commercial partially bio-based poly(butylene succinates) and their stabilization. J Appl Polym Sci 138(28):50669

    Article  CAS  Google Scholar 

  14. Salusjärvi L, Havukainen S, Koivistoinen O, Toivari M (2019) Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Appl Microbiol Biotechnol 103(6):2525–2535

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mincheva R, Delangre A, Raquez J-M, Narayan R, Dubois P (2013) Biobased Polyesters with Composition-Dependent Thermomechanical Properties: Synthesis and Characterization of Poly(butylene succinate-co-butylene azelate). Biomacromol 14(3):890–899

    Article  CAS  Google Scholar 

  16. Muñoz-Guerra S, Lavilla C, Japu C, Martínez de Ilarduya A (2014) Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chem 16(4):1716–1739

    Article  Google Scholar 

  17. Gomes M, Gandini A, Silvestre AJD, Reis B (2011) Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. J Polym Sci, Part A Polym Chem 49(17):3759–3768

    Article  CAS  Google Scholar 

  18. Veryasov G, Matsumoto K, Hagiwara R (2015) The Discrete AlF52–Fluoroaluminate Anion in the Structure of [Tetraethylammonium] 2[AlF5](H2O)2. Eur J Inorg Chem 2015(32):5306–5310

    Article  CAS  Google Scholar 

  19. Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2(6):550–554

    Article  CAS  PubMed  Google Scholar 

  20. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Correction: biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6(33):6096–6096

    Article  CAS  Google Scholar 

  21. Knoop RJI, Vogelzang W, van Haveren J, van Es DS (2013) High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J Polym Sci, Part A Polym Chem 51(19):4191–4199

    Article  CAS  Google Scholar 

  22. Burgess SK, Kriegel RM, Koros WJ (2015) Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules 48(7):2184–2193

    Article  CAS  Google Scholar 

  23. van Berkel JG, Guigo N, Kolstad JJ, Sipos L, Wang B, Dam MA, Sbirrazzuoli N (2015) Isothermal crystallization kinetics of poly (ethylene 2,5-furandicarboxylate). Macromol Mater Eng 300(4):466–474

    Article  Google Scholar 

  24. Araujo CF, Nolasco MM, Ribeiro-Claro PJA, Rudić S, Silvestre AJD, Vaz PD, Sousa AF (2018) Inside PEF: chain conformation and dynamics in crystalline and amorphous domains. Macromolecules 51(9):3515–3526

    Article  CAS  Google Scholar 

  25. Soccio M, Martínez-Tong DE, Alegría A, Munari A, Lotti N (2017) Molecular dynamics of fully biobased poly(butylene 2,5-furanoate) as revealed by broadband dielectric spectroscopy. Polymer 128:24–30

    Article  CAS  Google Scholar 

  26. Sousa AF, Guigo N, Pozycka M, Delgado M, Soares J, Mendonca PV, Coelho JFJ, Sbirrazzuoli N, Silvestre AJD (2018) Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polym Chem-Uk 9(6):722–731

    Article  CAS  Google Scholar 

  27. Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci, Part A: Polym Chem 50(5):1026–1036

    Article  CAS  Google Scholar 

  28. Zhu J, Cai J, Xie W, Chen P-H, Gazzano M, Scandola M, Gross RA (2013) Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis Physical Properties, and Crystal Structure. Macromolecules 46(3):796–804

    Article  CAS  Google Scholar 

  29. Vannini M, Marchese P, Celli A, Lorenzetti C (2015) Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chem 17(8):4162–4166

    Article  CAS  Google Scholar 

  30. Dai Z, Guo F, Zhang S, Zhang W, Yang Q, Dong W, Jiang M, Ma J, Xin F (2020) Bio-based succinic acid: an overview of strain development, substrate utilization, and downstream purification. Biofuels Bioprod Biorefin 14(5):965–985

    Article  CAS  Google Scholar 

  31. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Exarhopoulos S, Papageorgiou M, Bikiaris DN (2014) Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers Phase transitions of poly(butylene 2,5-furan-dicarboxylate). Polymer 55(16):3846–3858

    Article  CAS  Google Scholar 

  32. Wu L, Mincheva R, Xu Y, Raquez J-M, Dubois P (2012) High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) Copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromol 13(9):2973–2981

    Article  CAS  Google Scholar 

  33. Wu B, Xu Y, Bu Z, Wu L, Li B-G, Dubois P (2014) Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s: From synthesis using highly purified 2,5-furandicarboxylic acid to thermo-mechanical properties. Polymer 55(16):3648–3655

    Article  CAS  Google Scholar 

  34. Zheng M, Zang X, Wang G, Wang P, Lu B, Ji J (2017) Poly(butylene 2,5-furandicarboxylate-ε-caprolactone): a new bio-based elastomer with high strength and biodegradability. Express Polym Lett 11:611–621

    Article  CAS  Google Scholar 

  35. Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Salatelli E, Manaresi P, Munari A (2016) Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. Eur Polym J 81:397–412

    Article  CAS  Google Scholar 

  36. Hu H, Zhang R, Wang J, Ying WB, Shi L, Yao C, Kong Z, Wang K, Zhu J (2019) A mild method to prepare high molecular weight poly(butylene furandicarboxylate-co-glycolate) copolyesters: effects of the glycolate content on thermal, mechanical, and barrier properties and biodegradability. Green Chem 21(11):3013–3022

    Article  CAS  Google Scholar 

  37. Diao L, Su K, Li Z, Ding C (2016) Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). Rsc Adv 6(33):27632–27639

    Article  CAS  Google Scholar 

  38. Ouyang Q, Liu J, Li C, Zheng L, Xiao Y, Wu S, Zhang B (2019) A facile method to synthesize bio-based and biodegradable copolymers from furandicarboxylic acid and isosorbide with high molecular weights and excellent thermal and mechanical properties. Polym Chem Uk 10(41):5594–5601

    Article  CAS  Google Scholar 

  39. Wang G, Liang Y, Jiang M, Zhang Q, Wang R, Wang H, Zhou G (2020) High Tg and tough poly(butylene 2,5-thiophenedicarboxylate-co-1,4-cyclohexanedimethylene 2,5-thiophenedicarboxylate)s: Synthesis and characterization. J Appl Polym Sci 137(18):48634

    Article  CAS  Google Scholar 

  40. Ma J, Pang Y, Wang M, Xu J, Ma H, Nie X (2012) The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. J Mater Chem 22(8):3457–3461

    Article  CAS  Google Scholar 

  41. Ma J, Yu X, Xu J, Pang Y (2012) Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer 53(19):4145–4151

    Article  CAS  Google Scholar 

  42. Guidotti G, Gigli M, Soccio M, Lotti N, Gazzano M, Siracusa V, Munari A (2018) Poly(butylene 2,5-thiophenedicarboxylate): An Added Value to the Class of High Gas Barrier Biopolyesters. Polymers 10:167

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guidotti G, Gigli M, Soccio M, Lotti N, Gazzano M, Siracusa V, Munari A (2018) Ordered structures of poly(butylene 2,5-thiophenedicarboxylate) and their impact on material functional properties. Eur Polym J 106:284–290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial supports from “14th five-year” Science and Technology Research Program of the Education Department of Jilin Province (JJKH20210254KJ) and Development Foundation of Science and Technology in Jilin Province of China (20200401032GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Dong, Y., Hao, X. et al. Bio-based poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate): synthesis, thermal properties, crystallization properties and mechanical properties. Polym. Bull. 80, 5373–5395 (2023). https://doi.org/10.1007/s00289-022-04330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04330-y

Keywords

Navigation