Skip to main content

Advertisement

Log in

Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The production of films derived from renewable resources for food packaging applications is an important research area within the scope of sustainable development. Herein, fully biobased films made from cactus mucilage (CM), extracted from Algerian Opuntia ficus-indica cladodes, and agar (A), extracted from marine red algae, were assembled via solvent film casting method. The effect of agar concentration on the properties of the plasticized CM films (40 wt.% glycerol) was evaluated at three different mass ratios of CM/A, namely 70:30, 60:40 and 50:50. Overall, the results revealed that the polysaccharide-based films exhibited good mechanical properties (Young’s modulus ≥ 135 MPa and tensile strength ≥ 5.3 MPa) and UV-light protection (transmittance ≤ 40% (200–400 nm)), as well as thermal stability up to 140 °C, low water vapor transmission rate (WVTR ≤ 10.6 g h−1 m−2) and moderate antioxidant activity (DPPH scavenging ≥ 19% and ferric reducing antioxidant power ≥ 1.3 mg AAE per g of film). Following from this, the pliable freestanding CM/A-based films with UV protection, water barrier properties and antioxidant activity can be a low-cost and eco-friendly option for the development of active food packaging materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. United Nations (2021) Transforming our world: the 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda. Accessed 3 Jun 2021

  2. Vilela C, Kurek M, Hayouka Z et al (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222. https://doi.org/10.1016/J.TIFS.2018.08.006

    Article  CAS  Google Scholar 

  3. Carvalho JPF, Freire CSR, Vilela C (2021) Active Packaging. In: Galanakis C (ed) Sustainable food processing and engineering challenges, 1st edn. Academic Press, pp 315–341

    Chapter  Google Scholar 

  4. Kumar S, Mukherjee A, Dutta J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196–209. https://doi.org/10.1016/j.tifs.2020.01.002

    Article  CAS  Google Scholar 

  5. Vilela C, Pinto RJB, Coelho J et al (2017) Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocoll 73:120–128. https://doi.org/10.1016/j.foodhyd.2017.06.037

    Article  CAS  Google Scholar 

  6. Bastante CC, Silva NHCS, Cardoso LC et al (2021) Biobased films of nanocellulose and mango leaf extract for active food packaging: supercritical impregnation versus solvent casting. Food Hydrocoll 117:106709. https://doi.org/10.1016/j.foodhyd.2021.106709

    Article  CAS  Google Scholar 

  7. Moreirinha C, Vilela C, Silva NHCS et al (2020) Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocoll 108:105836. https://doi.org/10.1016/j.foodhyd.2020.105836

    Article  CAS  Google Scholar 

  8. Silva FAGS, Dourado F, Gama M, Poças F (2020) Nanocellulose bio-based composites for food packaging. Nanomaterials 10:2041. https://doi.org/10.3390/nano10102041

    Article  CAS  PubMed Central  Google Scholar 

  9. Vilela C, Moreirinha C, Domingues EM et al (2019) Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging. Nanomaterials 9:980. https://doi.org/10.3390/nano9070980

    Article  CAS  PubMed Central  Google Scholar 

  10. Esposito T, Silva NHCS, Almeida A et al (2020) Valorisation of chestnut spiny burs and roasted hazelnut skins extracts as bioactive additives for packaging films. Ind Crop Prod 151:112491. https://doi.org/10.1016/j.indcrop.2020.112491

    Article  CAS  Google Scholar 

  11. Kraśniewska K, Pobiega K, Gniewosz M (2019) Pullulan – Biopolymer with potential for use as food packaging. Int J Food Eng 15:20190030. https://doi.org/10.1515/ijfe-2019-0030

    Article  CAS  Google Scholar 

  12. Silva NHCS, Vilela C, Almeida A et al (2018) Pullulan-based nanocomposite films for functional food packaging: exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll 77:921–930. https://doi.org/10.1016/j.foodhyd.2017.11.039

    Article  CAS  Google Scholar 

  13. Marangoni L, Garcia da Silva R, Vieira RP, Alves RMV (2021) Water vapor sorption and permeability of sustainable alginate/collagen/SiO2 composite films. LWT 152:112261. https://doi.org/10.1016/j.lwt.2021.112261

    Article  CAS  Google Scholar 

  14. Marangoni Júnior L, Rodrigues PR, Garcia da Silva R et al (2021) Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: preparation and characterization. Food Bioprocess Technol 14:2336–2346. https://doi.org/10.1007/s11947-021-02727-7

    Article  CAS  Google Scholar 

  15. Vianna TC, Marinho CO, Marangoni Júnior L et al (2021) Essential oils as additives in active starch-based food packaging films: a review. Int J Biol Macromol 182:1803–1819. https://doi.org/10.1016/j.ijbiomac.2021.05.170

    Article  CAS  PubMed  Google Scholar 

  16. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications—a review. Int J Biol Macromol 159:1165–1176. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  17. Makhloufi N, Chougui N, Rezgui F et al (2021) Biobased sustainable films from the Algerian Opuntia ficus-indica cladodes powder: effect of plasticizer content. J Appl Polym Sci 138:e50450. https://doi.org/10.1002/app.50450

    Article  CAS  Google Scholar 

  18. Gheribi R, Khwaldia K (2019) Cactus mucilage for food packaging applications. Coatings 9:655. https://doi.org/10.3390/coatings9100655

    Article  CAS  Google Scholar 

  19. Felkai-Haddache L, Remini H, Dulong V et al (2016) Conventional and microwave-assisted extraction of mucilage from Opuntia Ficus-indica cladodes: physico-chemical and rheological properties. Food Bioprocess Technol 9:481–492. https://doi.org/10.1007/s11947-015-1640-7

    Article  CAS  Google Scholar 

  20. Barba FJ, Garcia C, Fessard A et al (2020) Opuntia Ficus Indica Edible parts: a food and nutritional security perspective. Food Rev Int. https://doi.org/10.1080/87559129.2020.1756844

    Article  Google Scholar 

  21. Aragona M, Lauriano ER, Pergolizzi S, Faggio C (2018) Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Nat Prod Res 32:2037–2049. https://doi.org/10.1080/14786419.2017.1365073

    Article  CAS  PubMed  Google Scholar 

  22. Procacci S, Bojórquez-Quintal E, Platamone G et al (2021) Opuntia ficus-indica pruning waste recycling: recovery and characterization of mucilage from cladodes. Nat Resour 12:91–107. https://doi.org/10.4236/nr.2021.124008

    Article  CAS  Google Scholar 

  23. Espino-Díaz M, De Jesús O-P, Martínez-Téllez MA et al (2010) Development and characterization of edible films based on mucilage of Opuntia ficus-indica (L.). J Food Sci 75:E347–E352. https://doi.org/10.1111/j.1750-3841.2010.01661.x

    Article  CAS  PubMed  Google Scholar 

  24. Gheribi R, Puchot L, Verge P et al (2018) Development of plasticized edible films from Opuntia ficus-indica mucilage: a comparative study of various polyol plasticizers. Carbohydr Polym 190:204–211. https://doi.org/10.1016/j.carbpol.2018.02.085

    Article  CAS  PubMed  Google Scholar 

  25. Gheribi R, Gharbi MA, El Ouni M, Khwaldia K (2019) Enhancement of the physical, mechanical and thermal properties of cactus mucilage films by blending with polyvinyl alcohol. Food Packag Shelf Life 22:100386. https://doi.org/10.1016/j.fpsl.2019.100386

    Article  Google Scholar 

  26. Lira-Vargas AA, Corrales-Garcia JJE, Valle-Guadarrama S et al (2014) Biopolymeric films based on cactus (Opuntia ficus-indica) mucilage incorporated with gelatin and beeswax. J Prof Assoc Cactus Dev 16:51–70

    Google Scholar 

  27. Ayquipa-Cuellar E, Salcedo-Sucasaca L, Azamar-Barrios JA, Chaquilla-Quilca G (2021) Assessment of prickly pear peel mucilage and potato husk starch for edible films production for food packaging industries. Waste and Biomass Valorization 12:321–331. https://doi.org/10.1007/s12649-020-00981-y

    Article  CAS  Google Scholar 

  28. Vilela C, Pinto RJB, Pinto S, et al (2018) Polysaccharide based hybrid materials: metals and metal oxides, graphene and carbon nanotubes, 1st ed. Switzerland AG: Springer

  29. Lee WK, Lim YY, Leow ATC et al (2017) Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym 164:23–30. https://doi.org/10.1016/j.carbpol.2017.01.078

    Article  CAS  PubMed  Google Scholar 

  30. Dick M, Dal Magro L, Rodrigues RC et al (2019) Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: physicochemical and functional performance. Int J Biol Macromol 123:900–909. https://doi.org/10.1016/j.ijbiomac.2018.11.126

    Article  CAS  PubMed  Google Scholar 

  31. Sarıcaoğlu FT, Turhan S (2019) Physical, chemical, thermal and microstructural characterization of edible films from mechanically deboned chicken meat proteins. J Polym Environ. https://doi.org/10.1007/s10924-019-01410-5

    Article  Google Scholar 

  32. Tan W, Dong F, Zhang J et al (2019) Physical and antioxidant properties of edible chitosan ascorbate films. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b04567

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moghadam M, Salami M, Mohammadian M et al (2020) Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll 104:105735. https://doi.org/10.1016/j.foodhyd.2020.105735

    Article  CAS  Google Scholar 

  34. Parveen S, Chaudhury P, Dasmahapatra U, Dasgupta S (2019) Biodegradable protein films from gallic acid and the cataractous eye protein isolate. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.07.143

    Article  PubMed  Google Scholar 

  35. Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  36. Nharingo T, Moyo M (2016) Application of Opuntia ficus-indica in bioremediation of wastewaters. Cr Rev J Environ Manag 166:55–72. https://doi.org/10.1016/j.jenvman.2015.10.005

    Article  CAS  Google Scholar 

  37. Otálora MC, Gómez Castaño JA, Wilches-Torres A (2019) Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT 112:108234. https://doi.org/10.1016/j.lwt.2019.06.001

    Article  CAS  Google Scholar 

  38. Leones R, Sentanin F, Rodrigues LC et al (2012) Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym Lett 6:1007–1016. https://doi.org/10.3144/expresspolymlett.2012.106

    Article  CAS  Google Scholar 

  39. Kumar S, Boro JC, Ray D et al (2019) Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 5:e01867. https://doi.org/10.1016/j.heliyon.2019.e01867

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pereira L, Gheda SF, Ribeiro-Claro PJA (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem. https://doi.org/10.1155/2013/537202

    Article  Google Scholar 

  41. Fonseca DFS, Carvalho JPF, Bastos V et al (2020) Antibacterial multi-layered nanocellulose-based patches loaded with dexpanthenol for wound healing applications. Nanomaterials 10:2469. https://doi.org/10.3390/nano10122469

    Article  CAS  PubMed Central  Google Scholar 

  42. Rivera-Corona JL, Rodríguez-González F, Rendón-Villalobos R et al (2014) Thermal, structural and rheological properties of sorghum starch with cactus mucilage addition. LWT Food Sci Technol 59:806–812. https://doi.org/10.1016/j.lwt.2014.06.011

    Article  CAS  Google Scholar 

  43. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR et al (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420. https://doi.org/10.1016/j.algal.2019.101420

    Article  Google Scholar 

  44. Rukmanikrishnan B, Rajasekharan SK, Lee J, Lee J (2019) Biocompatible agar/xanthan gum composite films: Thermal, mechanical, UV, and water barrier properties. Polym Adv Technol 30:2750–2758. https://doi.org/10.1002/pat.4706

    Article  CAS  Google Scholar 

  45. Smitha S, Rangaswamy K (2020) Effect of biopolymer treatment on pore pressure response and dynamic properties of Silty Sand. J Mater Civ Eng 32:04020217. https://doi.org/10.1061/(asce)mt.1943-5533.0003285

    Article  Google Scholar 

  46. Spence C, Velasco C (2018) On the multiple effects of packaging colour on consumer behaviour and product experience in the ‘food and beverage’ and ‘home and personal care’ categories. Food Qual Prefer 68:226–237. https://doi.org/10.1016/j.foodqual.2018.03.008

    Article  Google Scholar 

  47. Gominho J, Lopes C, Lourenço A et al (2014) Eucalyptus globulus stumpwood as a raw material for pulping. BioResources 9:4038–4049. https://doi.org/10.15376/biores.9.3.4038-4049

    Article  Google Scholar 

  48. Hu Y, Topolkaraev V, Hiltner A, Baer E (2001) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81:1624–1633. https://doi.org/10.1002/app.1593

    Article  CAS  Google Scholar 

  49. Yildirim S, Röcker B, Pettersen MK et al (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17:165–199. https://doi.org/10.1111/1541-4337.12322

    Article  PubMed  Google Scholar 

  50. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods 18:757–781. https://doi.org/10.1016/j.jff.2015.01.047

    Article  CAS  Google Scholar 

  51. Bayar N, Kriaa M, Kammoun R (2016) Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int J Biol Macromol 92:441–450. https://doi.org/10.1016/j.ijbiomac.2016.07.042

    Article  CAS  PubMed  Google Scholar 

  52. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  CAS  Google Scholar 

  53. Suppakul P, Boonlert R, Buaphet W et al (2016) Efficacy of superior antioxidant Indian gooseberry extract- incorporated edible Indian gooseberry puree/methylcellulose composite fi lms on enhancing the shelf life of roasted cashew nut. Food Control 69:51–60. https://doi.org/10.1016/j.foodcont.2016.04.033

    Article  CAS  Google Scholar 

Download references

Funding

This work was developed within the scope of the project CICECO – Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020) financed by national funds through the Portuguese Foundation for Science and Technology (FCT)/MCTES. FCT is also acknowledged for the research contracts under Scientific Employment Stimulus to C.S.R.F. (CEECIND/00464/2017) and C.V. (CEECIND/00263/2018). The authors also thank the University of Bejaia and the Direction Générale de la Recherche Scientifique et Développement Technologique, Algeria, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NC, CV; Methodology: NM, CV; Formal analysis and investigation: NM, EB, CV; Writing—original draft preparation: NM, CV; Writing—review and editing: NM, NC, FR, EB, AJDS, CSRF, CV; Funding acquisition: NC, FR, AJDS, CSRF; Resources: NC, FR, AJDS; Supervision: NC, FR, CSRF, CV.

Corresponding authors

Correspondence to Nadia Chougui or Carla Vilela.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhloufi, N., Chougui, N., Rezgui, F. et al. Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging. Polym. Bull. 79, 11369–11388 (2022). https://doi.org/10.1007/s00289-022-04092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04092-7

Keywords

Navigation