Skip to main content
Log in

Elasticity and conformational structure of pure and modified agaroses gel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dissolving Agarose, which is a biopolymer extracted from marine algae in water, gives rise to a more or less rigid solid mass called a gel. This gel can be described as a porous matrix, retaining the liquid phase (water). The matrix is a network of connected helices forming a more or less heterogeneous structure in terms of pore size distribution depending on the agarose concentration. These original experiments were performed with a batch of agarose gel (Setexam). This material has several applications in the food industry, pharmaceuticals and electrophoresis. The various experimental tests were carried out for various concentrations (0.5 g% < c < 9 g%) by mass of the agarose gel (cylinder 14 mm high and 14 mm in diameter) immersed in air and in water and for a rapid compression speed of 0.5 mm/s. These recent experiments aim to estimate the values of Young's modulus E by simple compression. It has been shown that the slope of the stress–strain curves depends both on the mechanical properties of the structure but also on the compressibility of the network through the Poisson's ratio υ. A related network (Agarose gel) behaves incompressibly in linear regime for small low deformation ε ≤ 4% and also for relatively fast compression speeds vary between V = 0.1 mm/s and V = 1 mm/s. Under these conditions, the elastic moduli \(E(\upsilon \approx 0.5,c)\)in linear regime (ε  ≤ 4%) of the gels of various agarose concentration c were compared. This rheological study of the gel exhibits elastic macroscopic behavior. This result is then used to determine the speed of propagation of ultrasonic waves. We conduct a statistical study to compare the molecular conformations agarose chemically modified M1 and M2 to sample M0. It is shown that the conformation of the helix is greater in the modified agarose gel M1 compared to M2 agarose modified at the same temperature. This was followed by a study of the thermal hysteresis confirming the reversibility of both types of modified agarose. Finally, we compare the gelation process of the three samples and we studied the variation of the entropy of M0, M1 and M2 to understand the role of the hydrogen bond in gel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Serwer P, Allen JL, Hayes SJ (1983) Agarose gel electrophoresis of bacteriophages and related particles. III. Dependence of gel sieving on the agarose preparation. Electrophoresis 4(3):232–236. https://doi.org/10.1002/elps.1150040309

    Article  CAS  Google Scholar 

  2. Wang Z, Yang K, Li H, Yuan C, Zhu X, Huang H, Wang Y, Lei S, Fang Y (2018) In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement. Int J Biol Macromol 112:803–808. https://doi.org/10.1016/j.ijbiomac.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  3. Ed-Daoui, A, Snabre P (2021). Poroviscoelasticity and compression-softening of agarose hydrogels. Rheologica Acta 60 327–351. https: //link.springer.com/article/https://doi.org/10.1007/s00397-021-01267-3

  4. M Dahmani (2002) Study of the thermoreversiblegelation of polysaccharide gels: Case of Chemically Modified agarose

  5. Fernández E, Hernández R, Teresa Cuberes M, Mijangos C, López D (2010) New hydrogels from interpenetrated physical gels of agarose and chemical gels of polyacrylamide: Effect of relative concentration and crosslinking degree on the viscoelastic and thermal properties. J Polym Sci, Part B: Polym Phys 48(23):2403–2412. https://doi.org/10.1002/polb.22123

    Article  CAS  Google Scholar 

  6. Watase M, Nishinari K (1983) Rheological properties of agarose gels with different molecular weights. Rheol Acta 22(6):580–587. https://doi.org/10.1007/bf01351404

    Article  CAS  Google Scholar 

  7. Guiseley KB (1970) The relationship between methoxyl content and gelling temperature of agarose. Carbohyd Res 13(2):247–256. https://doi.org/10.1016/s0008-6215(00)80831-9

    Article  CAS  Google Scholar 

  8. San Biagio PL, Madonia F, Sciortino P, Palma-Vittorelli MB, Palma MU (1984) Structure and dynamics of water and aquesous solutions: anomalies and ther possible implications. J Phys Colloques. https://doi.org/10.1051/jphyscol:1984725

    Article  Google Scholar 

  9. Dea ICM, McKinnon AA, Rees DA (1972) Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: reversible changes in conformation and association of agarose, carrageenan and galactomannans. J Mol Biol 68(1):153–172. https://doi.org/10.1016/0022-2836(72)90270-7

    Article  CAS  PubMed  Google Scholar 

  10. R Armisen, F Galatas Chapter 1 - production, properties and uses of agar. by Rafael Armisen and Fernando Galatas. Hispanagar,. S.A, Poligono Industrial de Villalonquejjar. Calle Lopez Bravo « A »,09080 Burgos, Spain

  11. Gilmer RW (1972) Free-floating mucus webs: a novel feeding adaptation for the open ocean. Science 176(4040):1239–1240. https://doi.org/10.1126/science.176.4040.1239

    Article  CAS  PubMed  Google Scholar 

  12. Raoult-Wack A-L, Botz O, Guilbert S, Rios G (1991) Simultaneous water and solute transport in shrinking media - part 3. Drying Technol 9(3):631–641. https://doi.org/10.1080/07373939108916700

    Article  Google Scholar 

  13. Clark AH, Ross-Murphy SB (1985) The concentration dependence of biopolymer gel modulus. Br Polym J 17(2):164–168. https://doi.org/10.1002/pi.4980170214

    Article  CAS  Google Scholar 

  14. Feke GT, Prins W (1997) Spinodal Phase Separation in a Macromolecular Sol ––>Gel Transition. Macromelecules 7(4):527–530. https://doi.org/10.1021/ma60040a022

    Article  Google Scholar 

  15. Matsuo M, Tanaka T, Ma L (2002) Gelation mechanism of agarose and κ-carrageenan solutions estimated in terms of concentration fluctuation. Polymer 43(19):5299–5309. https://doi.org/10.1016/S0032-3861(02)00290-2

    Article  CAS  Google Scholar 

  16. Tako M, Nakamura S (1988) Gelation mechanism of agarose. Carbohyd Res 180(2):277–284. https://doi.org/10.1016/0008-6215(88)80084-3

    Article  CAS  Google Scholar 

  17. Braudo EE (1992) Mechanism of galactan gelation. Food Hydrocolloids 6(1):25–43. https://doi.org/10.1016/S0268-005X(09)80056-8

    Article  CAS  Google Scholar 

  18. Joly-Duhamel C, Hellio D, Ajdari A, Djabourov M (2002) All gelatin networks: 2. Master Curve Elast Langmuir 18(19):7158–7166. https://doi.org/10.1021/la020190m

    Article  CAS  Google Scholar 

  19. Rochas C, Hecht AM, Geissler E (1996) Swelling properties of agarose gels. J Chim Phys 93:850–857. https://doi.org/10.1051/jcp/1996930850

    Article  CAS  Google Scholar 

  20. Tokita M, Hikichi K (1987) Mechanical studies of sol-gel transition: universal behaviour of elastic modulus. Phys Rev A 35(10):4329–4333. https://doi.org/10.1103/physreva.35.4329

    Article  CAS  Google Scholar 

  21. Schmidler SC, Lucas JE, Oas TG (2007) Statistical estimation of statistical mechanical models: helix-coil theory and peptide helicity prediction. J Comput Biol 14(10):1287–1310. https://doi.org/10.1089/cmb.2007.0008

    Article  CAS  PubMed  Google Scholar 

  22. Mao B, Divoux T, Snabre P (2016) Normal force controlled rheology applied to agar gelation. J Rheol 60(3):473–489. https://doi.org/10.1122/1.4944994

    Article  CAS  Google Scholar 

  23. A. Benatmane1*, M. Benelmostafa1, M. Dahmani1; (2017) Study of the mechanical properties of agarose gel chemically modified. J M E S 8(3): 1068-1075 https: //doi. org/ 10:jmaterenvironsci.com/Document/vol8/vol8_N3/114-JMES-3021-Benatmane.pdf.

  24. Ed-Daoui A, Benelmostafa M, Dahmani M (2019) Study of the viscoelastic properties of the agarose gel. Materials Today: Proceedings, 13, 746–751. https://doi.org/10.1016/j.matpr.2019.04.036.

  25. P. Papon, J. Leblond and P. H. Meijer, Physics of Phase Transitions, Springer, (2002)

  26. Atitoaie A, Tanasa R, Stancu A, Enachescu C (2014) Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model. J Magn Magn Mater 368:12–18. https://doi.org/10.1016/j.jmmm.2014.04.054

    Article  CAS  Google Scholar 

  27. Essifi K, Ed-Daoui A, Berraaouan D, Benelmostafa M, Dahmani M, Tahani A (2020) Determination of the mechanical properties of single calcium alginate microbeads loaded gallic acid. Mater Today Proc. Doi: https://doi.org/10.1016/j.matpr.2020.05.747

  28. Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. In Biopolymers. Advances in Polymer Science. Springer Berlin Heidelberg vol 8. https://doi.org/10.1007/BFb0023332

  29. Edens RE (2005) Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed Edited by Severian Dumitriu (University of Sherbrooke, Quebec). Marcel Dekker: New York. 2005. ISBN 0–8247–5480–8. Journal of the American Chemical Society, 127(28) 10119–10119. Doi: https://doi.org/10.1021/ja0410486

  30. Mao B, Divoux T, Snabre P (2017) Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry. Sci Rep 7:41185. https://doi.org/10.1038/srep41185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mrani, I., Fras, G., & Bénet, J. C. (1995). Microstructure et propriétés hygro-mécaniques du gel d’agar. Journal de Physique III, 5(7), 985–998.https://doi.org/10.1051/jp3:1995172

  32. van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible 123 biopolymer networks : compression-softening and stretch-stiffening. Sci rep 6:19270. https://doi.org/10.1038/srep19270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouzid M, Del Gado E (2017) Network topology in soft gels: hardening and softening materials. Langmuir 34(3):773–781. https://doi.org/10.1021/acs.langmuir.7b02944

    Article  CAS  PubMed  Google Scholar 

  34. T Bourbié, O Coussy, B Zinszner (1986) Acoustique des milieux poreux, Editions Technip

  35. Aymard P, Martin DR, Plucknett K, Foster TJ, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59(3):131–144. https://doi.org/10.1002/1097-0282(200109)59:3%3c131

    Article  CAS  PubMed  Google Scholar 

  36. Pernodet N, Maaloum M, Tinland B (1997) Pore size of agarose gels by atomic force microscopy. Electrophoresis 18(1):55–58. https://doi.org/10.1002/elps.1150180111

    Article  CAS  PubMed  Google Scholar 

  37. Ramzi M, Rochas C, Guenet JM (1998) Structure-properties relation for agarose thermoreversible gels in binary solvents. Macromolecules 31(18):6106–6111. https://doi.org/10.1021/ma9801220

    Article  CAS  Google Scholar 

  38. Rochas C, Brûlet A, Guenet JM (1994) Thermoreversible gelation of agarose inwater/dimethylsulfoxide mixtures. Macromolecules 27(14):3830. https://doi.org/10.1021/ma00092a023

    Article  CAS  Google Scholar 

  39. Mao B, Bentaleb A, Louerat F, Divoux T, Snabre P (2017) Heat-induced aging of agar solutions: Impact on the structural and mechanical properties of agar gels. Food Hydrocolloids 64:59–69. https://doi.org/10.1016/j.foodhyd.2016.10.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Mr A. Benatmane which has obtained his PhD grade under the direction of professors M. Benelmostafa (co-author) and M. Dahmani (co-author) for his contribution to the realization of a part of this work which was presented as an oral communication during congress entitled "technologies information and integrated production systems (Oujda Maroc TIPSI 2016)". This work was supported by annual funding from the CNRS (National Center for Scientific Research) in France and the Mohammed Premier University of Oujda (Morocco). The authors thanks Snabre Patrick for his constructive comments and for providing cylindrical duralumin molds with flat circular lamellae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Ed-Daoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ed-Daoui, A., Benelmostafa, M., Dahmani, M. et al. Elasticity and conformational structure of pure and modified agaroses gel. Polym. Bull. 79, 11119–11137 (2022). https://doi.org/10.1007/s00289-021-04007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04007-y

Keywords

Navigation