Skip to main content
Log in

Synthesis of novel curcumin-based aqueous polyurethane dispersions for medical textile diligences with potential of antibacterial activities

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a biologically active curcumin molecule is used as an antibacterial agent, and the insertion of this naturally occurring biomolecule into the backbone of water-dispersible polyurethane has been successfully achieved to synthesize bio-based antibacterial textile finishes. These curcumin-based water-dispersible polyurethane (CUR-WDPU) dispersions were prepared by utilizing isophorone diisocyanate (IPDI), polyethylene glycol (PEG), dimethylolpropionic acid (DMPA) and triethylamine (TEA) following the prepolymer mixing process by incorporating variable molar quantities of curcumin (CUR). Structure elucidation of synthesized CUR-WDPU dispersions was obtained through Fourier transformed infrared spectroscopy (FTIR) which confirmed the insertion of CUR into the WDPU backbone. Using the pad-dry-cure procedure, the varying varieties of plain weave polyester/cotton blended dyed and printed textile samples were treated with synthesized CUR-WDPU finishes. The antibacterial activities of these treated textiles have been assessed, and the outcomes revealed that the insertion of curcumin into the PU polymer chain has significantly boosted the antibacterial activities of PU dispersions. These newly prepared CUR-WDPUs dispersions are proved to be eco-friendly antimicrobial finishes because these are containing natural bioactive agents such as curcumin, showing potential antibacterial applications on polyester/cotton textiles. Predominantly, this research work is an attempt toward the greener approach of novel bio-based finishing materials preferably useful for textile diligences. Future investigations of these finishes will explore the other textile assets of poly-cotton textiles without adversely influencing their color fastness and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data regarding all the experiments have been included in the manuscript; therefore, no further data are available for sharing.

References

  1. Russo P, Acierno D, Marletta G, Destri GL (2013) Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes. Eur Polymer J 49(10):3155–3164

    Article  CAS  Google Scholar 

  2. Fiori DE (1997) Two-component water reducible polyurethane coatings. Prog Org Coat 32(1–4):65–71

    Article  CAS  Google Scholar 

  3. Aznar AC, Pardini O, Amalvy J (2006) Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders. Prog Org Coat 55(1):43–49

    Article  CAS  Google Scholar 

  4. Sankar RM, Roy TK, Jana T (2011) Functionalization of terminal carbon atoms of hydroxyl terminated polybutadiene by polyazido nitrogen rich molecules. Bull Mater Sci 34(4):745–754

    Article  CAS  Google Scholar 

  5. K.K. YEE, Aqueous polyurethane dispersion with non-yellowing and good bonding strength for water borne polyurethane footwear adhesives applications, (2006).

  6. Matsunaga K, Nakagawa K, Sawai S, Sonoda O, Tajima M, Yoshida Y (2005) Synthesis and characterization of polyurethane anionomers. J Appl Polym Sci 98(5):2144–2148

    Article  CAS  Google Scholar 

  7. Arshad N, Zia KM, Jabeen F, Anjum MN, Akram N, Zuber M (2018) Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int J Biol Macromol 111:485–492

    Article  CAS  PubMed  Google Scholar 

  8. Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM (2015) Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys 153:291–300

    Article  CAS  Google Scholar 

  9. Nguyen DA, Raghu AV, Choi JT, Jeong HM (2010) Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method. Polym Polym Compos 18(7):351–358

    CAS  Google Scholar 

  10. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromolecular Sci Part B 51(1):197–207

    Article  CAS  Google Scholar 

  11. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417

    Article  CAS  Google Scholar 

  12. W.D. Schindler, P.J. Hauser, Chemical finishing of textiles, Elsevier2004.

  13. Yun J-K, Yoo H-J, Kim H-D (2007) Preparation and properties of waterborne polyurethane-urea/poly (vinyl alcohol) blends for high water vapor permeable coating materials. Macromol Res 15(1):22–30

    Article  CAS  Google Scholar 

  14. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692

    Article  CAS  Google Scholar 

  15. J.R. Caldwell, G. Russell, Process for treating textile fibers and other shaped products with coatings, Google Patents, 1966.

  16. A.S. Forschirm, L.E. Trepasso, Anti-soiling polyester textile material, Google Patents, 1972.

  17. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113(1):80–118

    Article  CAS  PubMed  Google Scholar 

  18. K. Suzuki, S. Miura, Process for forming a polyurethane coated biaxially oriented polyester film, Google Patents, 1990.

  19. Fahmy H (2009) Utilization of poly (N-vinyl-2-pyrrolidone) in easy care finishing of cotton fabrics to improve their performance properties and antibacterial activities. J Ind Text 39(2):109–122

    Article  Google Scholar 

  20. Fahmy H (2004) 43 Enhancing some performance properties of ester crosslinked cotton fabric by pre-quaternization. Egypt J Chem 47(6):627–640

    CAS  Google Scholar 

  21. Abo-Shosha M, El-Hilw Z, Aly A, Amr A, Nagdy ASIE (2008) Paraffin wax emulsion as water repellent for cotton/polyester blended fabric. J Ind Text 37(4):315–325

    Article  CAS  Google Scholar 

  22. M. Abo-Shosha, Z. El-Hilw, A. Aly, A. Amr, A. Rabie, New Textile Water Repellent Based on Reaction of Toluene 2, 4-diisocyanate with Stearyl Alcohol, AATCC review, 9(7) (2009).

  23. Fahmy HM, Aly AA, Amr AA, Sayed SM, Rabie M (2017) Effect of phenolic compounds and water repellents combination on performance properties of cotton/polyester blended fabric. Egypt J Chem 60(1):69–84

    Google Scholar 

  24. Fahmy H, Eid R, Nada D, Abd El-Aziz S (2015) Functionalizaton of linen fabric using poly (N-vinyl-2-pyrrolidone). Egypt J Chem. 58(4):447–458

    Article  Google Scholar 

  25. Gaffer H, Gouda M, Abdel-Latif E (2013) Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. J Ind Text 42(4):392–399

    Article  CAS  Google Scholar 

  26. Eid R, Hassan T, Fahmy H, Amr A, Nada D (2015) Utilization of triclosan to enhance the antibacterial activities of linen fabric. Egypt J Chem 58(2):203–215

    Article  Google Scholar 

  27. Abdel-Wahab BF, Gaffer H, Fouda MM, Osman E, Fahmy H (2009) Synthesis of some new 2-[(2, 3-dihydroinden-1-ylidene) hydrazinyl]-4-methylthiazole derivatives for simultaneous dyeing and finishing for UV protective cotton fabrics. J Appl Polym Sci 112(4):2221–2228

    Article  CAS  Google Scholar 

  28. Ibrahim N, Abo-Shosha M, Fahmy H, El-Sayed Z, Hebeish A (2008) Hybrids for finishing cotton fabric with durable handle performance. J Mater Process Technol 200(1–3):385–389

    Article  CAS  Google Scholar 

  29. Fahmy H, Aly A, Mohamed Z (2016) Synthesis of poly (N-vinyl-2-pyrrolidone)/pyrodextrins adducts and their utilization in functionalization of cotton fabric. Int J Chem Tech Res 9(9):96–109

    CAS  Google Scholar 

  30. Fahmy H, Aly A, Sayed SM (2017) Graft copolymerization of N-vinylpyrrolidone onto stearyl alcohol to impart water repellency and antibacterial properties for cotton/polyester fabric. Prog Org Coat 105:176–182

    Article  CAS  Google Scholar 

  31. Fahmy H, Aly A, Amr A, Sayed SM, Rabie A (2016) SA/TDI/PEG adducts as water repellent finishes for cotton/polyester blended fabric. Prog Org Coat 99:166–172

    Article  CAS  Google Scholar 

  32. N. Ibrahim, Z. El-Sayed, H. Fahmy, A. Hassabo, M. Abo-Shosha, Perfume finishing of cotton/polyester fabric cross-linked with DMDHEU in presence of softeners, Research Journal of Textile and Apparel, (2013).

  33. Ibrahim N, Amr A, Eid B, Mohamed Z, Fahmy H (2012) Poly (acrylic acid)/poly (ethylene glycol) adduct for attaining multifunctional cellulosic fabrics. Carbohyd Polym 89(2):648–660

    Article  CAS  Google Scholar 

  34. Ibrahim N, Fahmy H, Rehim MA, Sharaf S, Abo-Shosha M (2010) Finishing of cotton fabrics with hyperbranched poly (ester-amine) to enhance their antibacterial properties and UV protection. Polym-Plast Technol Eng 49(13):1297–1304

    Article  CAS  Google Scholar 

  35. Fahmy H, Abo-Shosha M, Ibrahim N (2009) Finishing of cotton fabrics with poly (N-vinyl-2-pyrrolidone) to improve their performance and antibacterial properties. Carbohyd Polym 77(4):845–850

    Article  CAS  Google Scholar 

  36. Fahmy H, Eid R, Hashem S, Amr A (2013) Enhancing some functional properties of viscose fabric. Carbohyd Polym 92(2):1539–1545

    Article  CAS  Google Scholar 

  37. Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles-a review. Text Res J 80(16):1721–1737

    Article  CAS  Google Scholar 

  38. Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M (2010) Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55(2):65–70

    Google Scholar 

  39. Asouri M, Ataee R, Ahmadi AA, Amini A, Moshaei MR (2013) Antioxidant and free radical scavenging activities of curcumin. Asian J Chem 25(13):7593–7595

    Article  CAS  Google Scholar 

  40. Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigm 64(2):157–161

    Article  CAS  Google Scholar 

  41. Zhou Y, Zhang J, Tang R-C, Zhang J (2015) Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind Crops Prod 64:224–232

    Article  CAS  Google Scholar 

  42. A. Tai, T. Sawano, F. Yazama, H. Ito. (2011) Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)-General Subjects. 1810(2): 170–177.

  43. Rakchoy S, Suppakul P, Jinkarn T (2009) Antimicrobial effects of vanillin coated solution for coating paperboard intended for packaging bakery products. Asian J Food Agro-Industry 2(4):138–147

    Google Scholar 

  44. Shahidi F (2000) Antioxidants in food and food antioxidants. Food Nahrung 44(3):158–163

    Article  CAS  PubMed  Google Scholar 

  45. Ooi N, Chopra I, Eady A, Cove J, Bojar R, A. O’neill. (2013) Antibacterial activity and mode of action of tert-butylhydroquinone (TBHQ) and its oxidation product, tert-butylbenzoquinone (TBBQ). J Antimicrobial Chemotherapy. 68(6):1297–1304

    Article  CAS  Google Scholar 

  46. Buck D, Edwards M (1997) Antioxidants to prolong shelf-life. Food Technol Int 2:29–33

    Google Scholar 

  47. S. Zorofchian Moghadamtousi, H. Abdul Kadir, P. Hassandarvish, H. Tajik, S. Abubakar, K. Zandi, A review on antibacterial, antiviral, and antifungal activity of curcumin, BioMed research international, 2014 (2014).

  48. Khalil OAK, de Faria Oliveira OMM, Vellosa JCR, de Quadros AU, Dalposso LM, Karam TK, Mainardes RM, Khalil NM (2012) Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chemistry. 133(3):1001–1005

    Article  CAS  Google Scholar 

  49. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    Article  CAS  PubMed  Google Scholar 

  50. Basnet P, Skalko-Basnet N (2011) Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16(6):4567–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. G. Yakub, A. Toncheva, N. Manolova, I. Rashkov, D. Danchev, V. Kussovski, Electrospun polylactide‐based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect, Journal of Applied Polymer Science, 133(5) (2016).

  52. Sarika P, James NR, Raj DK (2016) Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels. Mater Sci Eng, C 68:251–257

    Article  Google Scholar 

  53. B.B. Aggarwal, A. Kumar, A.C. Bharti, Anticancer potential of curcumin: preclinical and clinical studies, Anticancer research, 23(1/A) (2003) 363–398.

  54. Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30(2):85–94

    Article  CAS  PubMed  Google Scholar 

  55. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(01):1–7

    Article  CAS  PubMed  Google Scholar 

  56. Jagetia GC, Aggarwal BB (2007) “Spicing up” of the immune system by curcumin. J Clin Immunol 27(1):19–35

    Article  CAS  PubMed  Google Scholar 

  57. A. Kumar, A. Ahuja, J. Ali, S. Baboota, Conundrum and therapeutic potential of curcumin in drug delivery, Critical Reviews™ in Therapeutic Drug Carrier Systems, 27(4) (2010).

  58. Zia F, Zia KM, Zuber M, Rehman S, Tabasum S, Sultana S (2016) Synthesis and characterization of chitosan/curcumin blends based polyurethanes. Int J Biol Macromol 92:1074–1081

    Article  CAS  PubMed  Google Scholar 

  59. Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 66:26–32

    Article  CAS  PubMed  Google Scholar 

  60. Bai CY, Zhang XY, Dai JB, Zhang CY (2007) Water resistance of the membranes for UV curable waterborne polyurethane dispersions. Prog Org Coat 59(4):331–336

    Article  CAS  Google Scholar 

  61. Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloids Surf, A 196(2–3):135–143

    Article  CAS  Google Scholar 

  62. Tabasum S, Zuber M, Jamil T, Shahid M, Hussain R (2013) Antimicrobial and pilling evaluation of the modified cellulosic fabrics using polyurethane acrylate copolymers. Int J Biol Macromol 56:99–105

    Article  CAS  PubMed  Google Scholar 

  63. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4, 4’-{1, 4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60(5):609–616

    Article  CAS  Google Scholar 

  64. Raghu A, Jeong HM, Kim JH, Lee YR, Cho YB, Sirsalmath K (2008) Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl) iminomethyl} phenol. Macromol Res 16(3):194–199

    Article  CAS  Google Scholar 

  65. Ammayappan L, Moses JJ (2009) Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers and polymers 10(2):161–166

    Article  CAS  Google Scholar 

  66. Varaprasad K, Vimala K, Ravindra S, Reddy NN, Reddy GVS, Raju KM (2011) Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci - Mater Med 22(8):1863–1872

    Article  CAS  PubMed  Google Scholar 

  67. Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA (2009) Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1, 4-butane diol blends. Int J Biol Macromol 44(1):18–22

    Article  CAS  PubMed  Google Scholar 

  68. Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA (2009) Evaluation of biocompatibility and mechanical behavior of chitin-based polyurethane elastomers Part-II: Effect of diisocyanate structure. Int J Biological macromolecules. 44(1):23–28

    Article  CAS  Google Scholar 

  69. Gul P, Bakht J (2015) Antimicrobial activity of turmeric extract and its potential use in food industry. J Food Sci Technol 52(4):2272–2279

    Article  CAS  PubMed  Google Scholar 

  70. Chen J, Wang F-L, Chen W-D (2014) Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep 41(7):4583–4594

    Article  CAS  PubMed  Google Scholar 

  71. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaur S, Modi NH, Panda D, Roy N (2010) Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin. Eur J Med Chem 45(9):4209–4214

    Article  CAS  PubMed  Google Scholar 

  73. Kannan K, Radhika D, Reddy KR, Raghu AV, Sadasivuni KK, Palani G, Gurushankar K (2021) Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express. 2(1):010014

    Google Scholar 

  74. Kannan K, Radhika D, Nesaraj A, Sadasivuni KK, Reddy KR, Kasai D, Raghu AV (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Materials Science for Energy Technol 3:853–861

    CAS  Google Scholar 

Download references

Acknowledgements

This research work is taken from PhD thesis of Dr. Noureen Arshad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tahir Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, N., Zia, K.M., Hussain, M.T. et al. Synthesis of novel curcumin-based aqueous polyurethane dispersions for medical textile diligences with potential of antibacterial activities. Polym. Bull. 79, 7711–7727 (2022). https://doi.org/10.1007/s00289-021-03871-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03871-y

Keywords

Navigation