Skip to main content
Log in

A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In recent years, glass fiber-reinforced epoxy composites have been proven to be a promising material for use in fabricating insulator core rods for high-voltage transmission lines. Composite insulator core rods are reportedly degrading during its application due to poor interfacial bonding, brittle fracture, stress corrosion cracking, water absorption, and decay-like fracture. These key factors have affected their mechanical and electrical insulation properties during application. However, this review summarizes the effects of glass fibers, such as E-glass and electrical corrosion resistance glass fiber on the corrosion, mechanical, and electrical properties of epoxy composites for composite insulator core rods. Further, the authors concluded the review with advancement, challenges, and recommendations for future improvement of epoxy composites as a mechanical load-bearing and insulation component material in high-voltage composite insulators. As such, the review offers an intuition into the advancement and selection of glass fiber-reinforced epoxy composite materials for core rods. More so, the review will also give way for further research on insulator core rods development for high-voltage transmission lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thadei A (2010) The case study of tanzania field performance of polymeric insulators and dielectric characteristics of silicone rubber and epoxy resin formulations. (Electrical Power and High Voltage Engineering), Thesis University; 2010

  2. Plesa I (2016) Properties of polymer composites used in high-voltage applications. Review Polym 8(5):173

    Google Scholar 

  3. Jaya A (2012) The performance of high voltage insulator based on epoxypolysiloxane and rice husk ash compound in tropical climate area. Electr Electron Eng 2(4):208–216

    Article  Google Scholar 

  4. Taherian R (2019) Application of polymer-based composites. Electr Conduct Polym-Based Compos: Exp, Model Appl. https://doi.org/10.1016/b978-0-12-812541-0.00006-9

    Article  Google Scholar 

  5. Aman A, Abdullah AR, Yaacob MM (2012) Dielectric property of waste tire dust-polypropylene (WTD-PP) Composite for high voltage outdoor insulation application. In: IEEE international power engineering and optimization conference (PEOCO2012). Malaysia: Melaka; 2012. pp 6–7, June 2012

  6. Gafti A (2017) Manufacturing of composite insulators coated with silicone (HTV) reinforced by aluminum hydrate and TiO2 nanoparticles. Chemical and Materials Engineering Department. Iran: Shahrood University of Technology

  7. Gubanski SM (2008) Ageing of composite insulators composites. Woodhead Publishing. pp. 421–447

  8. Andersson J, Gubanski SM, Hillborg H (2007) Properties of interfaces in silicone rubber. IEEE Trans Dielectr Electr Insul 14(1):137–145

    Article  CAS  Google Scholar 

  9. Arshad AN, Scott GM, Masoud F (2016) Flashover characteristics of silicone rubber sheets under various environmental conditions. Energies 9:683

    Article  Google Scholar 

  10. Moghadam MK, Morshedian J, Ehsani M, Bahrami M, Saddadi H (2013) Life time prediction of HV silicone rubber insulators based on mechanical tests after thermal aging. IEEE Trans Dielectr Electr Insul 20(2013):711

    Article  CAS  Google Scholar 

  11. Cherney EA (2013) 50 years in the development of polymer suspension-type insulators. IEEE Electr Insul 29(3):18–26

    Article  Google Scholar 

  12. Liang X, Wang S, Fan J (1999) Development of composite insulators in China. IEEE Trans Dielectr Electr Insul 6(5):586–594

    Article  CAS  Google Scholar 

  13. Gorur RS, Cherney EA, Burnham JT (1999) Outdoor insulators. Ravi S. Gorur Inc

  14. Ferreira TV, Germano AD, Da Costa EG, Angelini JMG, Nallim FE, Mendonça P (2010) Naturally aged polymeric insulators: Washing and its consequences. Modern Electric Power System, Conf, Wroclaw Poland. IEEE Xplore, pp. 1–5

  15. Burks B (2010) Effect of excessive bending on residual tensile strength of hybrid composite rods. Compos Sci Technol 70:1490–1496

    Article  CAS  Google Scholar 

  16. Gao Y, Liang X, Bao W, Wu C, Li S (2019) Degradation characteristics of epoxy resin of GFRP rod in the decay-like fracture of composite insulator. IEEE Trans Dielectr Electr Insul 26(1):107–114

    Article  CAS  Google Scholar 

  17. Ferreira TV, Germano AD, Da Costa EG (2010) Naturally aged polymeric insulators: washing and its consequences. In: Conference Modern Electric Power Systems 2010, Wroclaw, Poland

  18. Capelini RM, Martinez JFB, Parentoni MFC (2015) Development of a system for detecting and locating damaged insulator strings with signals collected at substations. Ingeniería E Invest 35:43–48

    Article  Google Scholar 

  19. Plate WJ, Ling TH, Nuccio JF (1963) Reassessment of polyethylene power cable. IEEE Trans Power App Syst 82:900–1002

    Article  Google Scholar 

  20. Teyssedre G, Laurent C (2013) Advances in high-field insulating polymeric materials over the past 50 years. IEEE Electr Insul Mag 29(5):26–36

    Article  Google Scholar 

  21. Kaltenborn U, Meier P, Dirix Y (2002) Loss and recovery of hydrophobicity of novel Hydrophobic epoxy resins; 2002 CEIDP, Cancum, Mexico

  22. Meirer P, Hanselman S, Kaltenborn U (2002) Rocks J (2002) Novel approach to combining hydrophobicity and high mechanical petrformance in epoxy resin. ABB Switzerland Ltd, Corporate Research, Baden-Dattwil

    Google Scholar 

  23. Schmuck O, Papailiou FK (2013) Silicone composite insulators. Springer, Berlin Heidelberg

    Google Scholar 

  24. CIGRE (2000) Worldwide service experience with HV composite insulators. Electra, Paris, p 191

    Google Scholar 

  25. Xie Q, Cheng Y, Chen S, Wu G, Wang Z, Jia Z (2017) Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J Mater Sci: Mater Electron 28:17871–17880

    CAS  Google Scholar 

  26. Xanthos M (2010) Polymers and polymer composites. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley, Weinheim, pp 1–18

    Chapter  Google Scholar 

  27. Bozkur ÖY, Erkliğl A, Bozkurt YT (2019) Influence of basalt fiber hybridization on the vibration-damping properties of glass fiber reinforced epoxy laminates. Mater Res Express 6:015301

    Article  Google Scholar 

  28. Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  29. Wallenberg FT, Machesney JB, Naslain R (2011) Advanced inorganic fibers: processes-structure-properties-applications. Springer Science & Business Media

  30. Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. J Mater Des 27(10):862–871

    Article  CAS  Google Scholar 

  31. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber reinforced polymer composites: a review. J Reinf Plast Compos 33(13):1258–1275

    Article  CAS  Google Scholar 

  32. Erden S, Sever K, Seki Y, Sarikanat M (2010) Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fibers Polym 11:732–737

    Article  CAS  Google Scholar 

  33. Gupta N, Brar BS, Woldesenbet E (2001) Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy. Bull Mater Sci 24:219–223

    Article  CAS  Google Scholar 

  34. Patnaik A, Satapathy A, Biswas S (2010) Investigations on three-body abrasive wear and mechanical properties of particulate filled glass epoxy composites. Malaysian Polym J 5(2):37–48

    Google Scholar 

  35. Aktas A, Tercan M, Aktas M, Turan F (2013) Investigation of knitting architecture on the impact behavior of glass/ epoxy composites. Compos Part 46:81–90

    Article  CAS  Google Scholar 

  36. Nagaraj HP, Ravi KN, Vasudev N (2017) Experimental study on surface erosion and brittle fracture of FRP rod in polymeric insulators. In: National conference on high voltage engineering & technology (NCHVET2017), pp. 27–28 January 2017

  37. Park S-J, Seo M-K (2011) Element and processing. Interface Sci Technol. https://doi.org/10.1016/b978-0-12-375049-5.00006-2

    Article  Google Scholar 

  38. Dalai RP (2010) An assessment of mechanical behaviour of fibrous polymeric composites under different loading speeds at above and sub-ambient temperatures. Master thesis, National institute of Technology, Rourkela, 2010

  39. Plesa I, Notingher PV, Schlögl S, Sumereder C, Muhr M (2016) Review properties of polymer composites used in high-voltage applications. Polym 8:173

    Article  Google Scholar 

  40. Kochetov R, Andritsch T, Morshuis PHF, Smit JJ (1988) Thermal and electrical behaviour of epoxy-based micro-composites filled with Al2O3 and SiO2 particles. In: Conference paper in electrical insulation, conference record of the 1988 IEEE international symposium on July 2010

  41. Zheng Y, Zheng Y, Ning R (2003) Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Lett 57:2940–2944

    Article  CAS  Google Scholar 

  42. Paluvai NR, Mohanty S, Nayak SK (2015) Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. J Appl Polym Sci 132:15–17

    Article  Google Scholar 

  43. Barcia FL, Amaral TP, Soares BG (2003) Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer 44:5811–5819

    Article  CAS  Google Scholar 

  44. Fiore V, Valenza A (2013) Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. Advanced fibre-reinforced polymer (FRP) composites for structural applications, Woodhead Publishing Series in Civil and Structural Engineering. pp. 88–121

  45. Bhatia S, Angra S, Khan S (2020) A review on mechanical and tribological characterization of boron carbide reinforced epoxy composite. Adv Compo Mater. https://doi.org/10.1080/09243046.2020.1759482

    Article  Google Scholar 

  46. Akay M (1992) Bearing strength of as cured and hygrothermally conditioned carbon-fibre/epoxy composites under static and dynamic loading. Compos 23(2):101–108

    Article  CAS  Google Scholar 

  47. May CA, Tanka GY (1973) Epoxy resin chemistry and technology. Marcel Decker, New York

    Google Scholar 

  48. Gonçalez V, Barcia FL, Soares BG (2006) Composite materials based on modified epoxy resin and carbon fiber. J Braz Chem Soc 17(6):1117–1123

    Article  Google Scholar 

  49. Wang R, Zheng S, Zheng Y (2014). Introduction to polymer matrix composite. Woodhead Publishing Series in Composites Science and Engineering, pp. 1–25, 547–548

  50. Plueddemann EP (1991) Reminiscing on silane coupling agents. J Adhes Sci Technol 5:261–277

    Article  CAS  Google Scholar 

  51. Sharma AK, Bhandari R, Aherwar A, Rimašauskienė R (2019) Matrix materials used in composites: a comprehensive study. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.11.086

    Article  Google Scholar 

  52. Jang BZ (1994) Advanced polymer composites: principle and applications. ASM International, Materials Park

    Google Scholar 

  53. Shimizu T, Kinoshita S, Makishima S, Sato J, Sakaguchi O (2003) Material and simulation technology for solid insulated switchgear. In: IEEE 7th international conference on properties and application of dielectric materials (ICPADM), S22-5, pp. 1194–1197

  54. Nagavally RR (2017) Composite material history, types, fabrication, techniques advantage, and applications. Int J Mech Prod Eng 5:82–87

    Google Scholar 

  55. Jaffer HI, Harair R, Ammar N, Mahdi Y, Noaman R (2015) Study the electrical insulation of polymeric composite. J Al-Nahrain Univ 18(2):50–55

    Article  Google Scholar 

  56. Kim M, An S, Ko D, Kyung J (2014) Prediction of bending stiffness for laminated CFRP and its application to manufacturing of roof reinforcement. Adv Mech Eng 14:1–11

    Google Scholar 

  57. Al-hassany MOA, Al-Dulaimy A, Al-Sammarraie A, Ali AF (2020) Effect of fiberglass form on the tensile and bending characteristic of epoxy composite material. AIMS Mater Sci 7(5):583–595

    Article  CAS  Google Scholar 

  58. Amini M, Khavandi A (2018) The Evaluation of the electrical properties and mechanical behavior of insulator’s composite core in harsh environments. Mater Res Exp Press 5:115306. https://doi.org/10.1088/2053-1591/aadde1

    Article  CAS  Google Scholar 

  59. Jiang X, Kolstein H, Bijlaard F, Qiang X (2014) Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics. Compos Part A: Appl Sci Manufact 57:49–58

    Article  CAS  Google Scholar 

  60. Eslami S, Honarbakhsh-Raouf A, Eslami S (2015) Effects of moisture absorption on degradation of E-glass fiber reinforced vinyl ester composite pipes and modelling of transient moisture diffusion using finite element analysis. Corros Sci 90:168–175

    Article  CAS  Google Scholar 

  61. Ellyin F, Maser R (2004) Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos Sci Technol 64(12):1863–1874

    Article  CAS  Google Scholar 

  62. Huang G, Sun H (2007) Effect of water absorption on the mechanical properties of glass/polyester composites. Mater Des 28(5):1647–1650

    Article  CAS  Google Scholar 

  63. Tuncer E, Sauers I, James DR, Ellis AR (2009) Electrical insulation characteristics of glass fiber reinforced resins. IEEE Trans Appl Supercond 19(3):2359–2362

    Article  CAS  Google Scholar 

  64. Wieczorek K, Jaroszewski M, Ranachowski P, Ranachowski Z (2018) Examination of the properties of samples from glass-epoxy core rods for composite insulators subjected to dc high voltage. Arch Metall Mater 63(3):1281–1286

    CAS  Google Scholar 

  65. Velaga BS, Kaza C, Rao DN (2013) Polymer and FRP technology: an alternative to conventional porcelain for future power sector. Int J Eng Res Technol 2(12):425–432

    Google Scholar 

  66. Armentrout D, Kumosa M, Kumosa L (2004) Water diffusion into and electrical testing of composite insulator GRP rods. IEEE Trans Dielectr Electr Insul 11(3):506–522

    Article  CAS  Google Scholar 

  67. Mohammad A, Alireza K (2019) Synergistic effects of mechanical and environmental loading in stress corrosion cracking of glass/polymer composites. J Comp Mater 53(24):3433–3444

    Article  Google Scholar 

  68. Kumosa M (2007) Structural integrity and durability of high voltage composite insulators. Int J Struct Integ Durabil 3:35–50

    Google Scholar 

  69. Kumosa LS, Kumosa MS, Armentrout DL (2005) Resistance to brittle fracture of glass reinforced polymer composites used in composite (Nonceramic) insulator. IEEE Trans Pow Deliv 20:2657–2666

    Article  CAS  Google Scholar 

  70. Liang X, Dai J (2006) Analysis of the acid sources of a field brittle fracture composite insulator. IEEE Trans Dielectr Electr Insul 13:870–876

    Article  CAS  Google Scholar 

  71. Armentrout DL, Kumosa M, Terry SM (2003) Boron-free fibers for prevention of acid induced brittle fracture of composite insulator GRP rods. IEEE Trans Power Deliv 18:684–693

    Article  CAS  Google Scholar 

  72. Solis-Ramos E, Kumosa M (2017) Synergistic effects in stress corrosion cracking of glass reinforced polymer composites. Polym Degrad Stabil 136(2017):146–157

    Article  CAS  Google Scholar 

  73. Jones FR, Rock JW, Wheatley AR (1983) Stress corrosion cracking and its implications for the long-term durability of E-glass fibre composite. Compos 14(3):262–269

    Article  CAS  Google Scholar 

  74. Lewis G, Bedder SW, Reid I (1984) Stress corrosion of glass fibres in acidic environments. J Mater Sci Lett 3(8):728–732

    Article  CAS  Google Scholar 

  75. Rodriguez EL (1987) Corrosion of glass fibers. J Mater Sci Lett 6(6):718–720

    Article  CAS  Google Scholar 

  76. Ely T, Armentrout D, Kumosa M (2001) Evaluation of stress corrosion properties of pultruded glass fiber/polymer composite materials. J Compos Mater 35(9):751–773

    Article  CAS  Google Scholar 

  77. Kumosa L, Kumosa M, Armentrout D (2003) Resistance to stress corrosion cracking of unidirectional ECR-glass/polymer composites for high voltage composites insulator applications. Compos Part A 34(1):1–15

    Article  Google Scholar 

  78. Hartman D, Greenwood D, Miller DM (1996) High strength glass fibers, Tech. Pap. AGY pp.1–11

  79. Kudryavtsev MY, Popovich NV, Mikhailenko NY, Kolesov YI (2000) Modification of alkaline-free glass compositions for fiberglass production. Glass Ceram 57:9–10

    Article  Google Scholar 

  80. Li H, Gu P, Watson J, Meng J (2013) Acid corrosion resistance and mechanism of E-glass fibers: boron factor. J Mater Sci 48(8):3075–3087

    Article  CAS  Google Scholar 

  81. Liu J, Jiang M, Wang Y, Wu G, Wu Z (2013) Tensile behaviors of ECR-glass and high strength glass fibers after NaOH treatment. Ceram Int 39(8):9173–9178

    Article  CAS  Google Scholar 

  82. Lieser M (2011) Glass fibre reinforcement type significantly impacts FRP corrosion performance. JEC Compos Mag 69:49–51

    Google Scholar 

  83. Xie J, Yin P, Shi W, Hu M, Wang J, Zhou X, Han J, Cao S, Han L, Yao Y (2016) Corrosion mechanism of E-glass of chemical resistance glass fiber in acid environment. J Wuhan Univ Technol-Mater Sci 31:872–876

    Article  CAS  Google Scholar 

  84. Wallenberger FT, Bingham PA (2010) Fiberglass and glass technology: energy- friendly compositions and applications, Springer Science & Business Media, LLC, 2010

  85. Owens C (2011) Glass fiber reinforcement chemical resistance guide for the selection of glass fiber reinforcements in fiber reinforced polymer (FRP) for corrosive environments, 2011, pp. 1–32

  86. Wieczorek K, Ranachowski P, Zbigniew R, Papliński P (2020) Ageing tests of samples of glass-epoxy core rods in composite insulators subjected to high direct current (DC) voltage in a thermal chamber. Energies 13(24):6724

    Article  Google Scholar 

  87. Salgar SA, Sathesandip B, Chaudharibapu P, Jagadale VS (2017) Experimental investigation of mechanical properties of glass fibre/epoxy composites with variable volume fraction. Materi Today: Proc 4:487–9490

    Google Scholar 

  88. Nayak RK, Dash A, Ray BC (2014) Experimental investigation of mechanical behavior of glass-fiber reinforced polyurethane resin composite in three different ratios. Procedia Mater Sci 61359–1364

  89. Hemanth RD, Kumar MS, Gopinath A, Natrayan L (2017) Evaluation of mechanical properties of E-glass and coconut fiber reinforced with polyester and epoxy resin matrices. Int J Mech Product Eng Res Develop 7(5):13–20

    Article  CAS  Google Scholar 

  90. Dogan A, Atas C (2016) Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging. J Compos Mater 50(5):637–646

    Article  CAS  Google Scholar 

  91. Bessède J-L (2013) Schneider electric, France. Development of advanced materials for transmission and distribution (T&D) networks equipment. Woodhead Publishing Limited. Pp. 133–142. https://doi.org/10.1533/9780857097378.2.133

  92. Zhaoqing L, Wangbing Z, Lei Y, Peng C, Chunze Y, Chao C, Hua L, Lee L, Yusheng S (2019) Glass fiber-reinforced phenol formaldehyde resin-based electrical insulating composites fabricated by selective laser sintering. Polym 11:135

    Article  Google Scholar 

  93. Jacek W, Jerzy B (2010) Models of the long-term mechanical strength of long rod composite insulators. IEEE Trans Dielectr Electr Insul 1(2):360–367

    Google Scholar 

  94. Chavan VB, Gaikwad MU (2016) Review on development of glass fiber/Epoxy composite material and its characterizations. Int J Sci Eng Technol Res 5(6):2224–2228

    Google Scholar 

  95. Chughtai AR, Smith DM, Kumosa LS, Kumosa M (2004) FTIR analysis of non-ceramic composite insulators. IEEE Trans Dielectr Elect Insul 11(4):585–596

    Article  Google Scholar 

  96. Kumosa M, Kumosa L, Armentrout D (2004) Can water cause brittle fracture failures of composite (nonceramic) insulators in the absence of electric fields? IEEE Trans Dielectr Elect Insul 11(3):523–533

    Article  CAS  Google Scholar 

  97. Wang B, Lu J, Fang Z, Jiang Z, Hu J (2020) Development of antithunder composite insulator for distribution line. IEEJ Trans Electr Electron Eng 15:100–107

    Article  Google Scholar 

  98. Zhang L, Sun Q, Wang HC, Zhao XL, Hu JM, Guan SQ (2010) Experimental study on the mechanical properties of E-glass fiber/epoxy composite material. Electr Power Construct 31(9):118–121

    CAS  Google Scholar 

  99. Asi O (2009) Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 Particles. J Reinf Plast Compos 28(23):2861–2867

    Article  CAS  Google Scholar 

  100. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:2055–2067

    Article  CAS  Google Scholar 

  101. Hussain M, Nakahira A, Niihara K (1996) Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Mater Lett 26:185–191

    Article  CAS  Google Scholar 

  102. Correia J, Gomes MM, Pires JM, Branco F (2013) Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: experiments and model assessment. Compos Struct 98:303–313

    Article  Google Scholar 

  103. Nayak RK, Ray BC (2018) Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Arch Civil Mech Eng 18:597–1607

    Article  Google Scholar 

  104. Panda P, Mishra G, Mantry S, Singh SK, Sinha SP (2014) A study on mechanical, thermal, and electrical properties of glass fiber-reinforced epoxy hybrid composites filled with plasma-synthesized AlN. J Compos Mater 48(25):3073–3082

    Article  Google Scholar 

  105. Molisani AL, Yoshimura HN (2010) Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method. Mater Res Bull 45:733–738

    Article  CAS  Google Scholar 

  106. Mussler BH (2000) Advanced materials and powders–aluminium nitride (AlN). Am Ceram Soc Bull 79:45–47

    CAS  Google Scholar 

  107. Muhammad YH, Ahmad S (2013) Mechanical and thermal properties of glass fiber-reinforced epoxy composite with matrix modification using liquid epoxidized natural rubber. J Reinf Plast Compos 32(9):612–618

    Article  Google Scholar 

  108. Thomason JL (1995) The interface region in glass fibre-reinforced epoxy resin composites: 1. sample preparation, void content and interfacial strength. Compos 26:467–475

    Article  CAS  Google Scholar 

  109. Lin W, Wang Y, Aider Y, Rostaghi-Chalaki M, Yousefpour K, Kluss J, Wallace D, Liu Y, Hu W (2020) Analysis of damage modes of glass fiber composites subjected to simulated lightning strike impulse voltage puncture and direct high voltage AC puncture. J Compos Mater 54(26):4067–4080

    Article  Google Scholar 

  110. Kechaou B, Salvia M, Benzarti K, Turki C, Fakhfakh Z, Tre’heux D (2011) Role of fiber/matrix interphases on dielectric, friction, and mechanical properties of glass fiber-reinforced epoxy composites. J Compos Mater 46(2):131–144

    Article  Google Scholar 

  111. Park D-W, Oh G-H, Kim H-S (2019) Predicting the stacking sequence of E-glass fiber reinforced polymer (GFRP) epoxy composite using terahertz time-domain spectroscopy (THz-TDS) system. Compos Part B 177:107385

    Article  CAS  Google Scholar 

  112. Manju MB, Sai V, Nikhil KS, Sharaj AP, Madhav M (2018) Electrical conductivity studies of glass fiber reinforced polymer composites. Mater Today: Proc 5(2018):3229–3236

    CAS  Google Scholar 

  113. Ogaili AAF, Al-Ameen ES, Kadhim MS, Mustafa MN (2020) Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Mater Sci 7(1):93–102

    Article  CAS  Google Scholar 

  114. Suresh KD, Sanjeeva M, Mallesh G (2020) Evaluation of mechanical properties of sisal /glass fiber reinforced epoxy composites. Int J Eng Res Technol 9(7):1122–1127

    Google Scholar 

  115. Nasif RA (2014) Study the effect of fillers on the glass fiber reinforced composites. Eng Tech J 32(1):47–53

    Google Scholar 

  116. Yanfeng G, Xidong L, Weining B, Shaohua L, Chao W (2018) Failure analysis of a field brittle fracture composite insulator: characterization by FTIR analysis and fractography. IEEE Trans Dielectr Electr Insu 25(3):919–927

    Article  Google Scholar 

  117. Nagaraj HP, Ravi KN, Vasudev N (2018) Brittle fracture of GRP rod used in polymeric insulators an experimental study. Int J Electr Electr Eng 7(2):9–16

    Google Scholar 

  118. Mohammad A, Alireza K (2019) Synergistic effects of mechanical and environmental loading in stress corrosion cracking of glass/polymer Composites. J Compos Mater 53(24):3433–3444

    Article  Google Scholar 

  119. Amin K, Faizal M, Mohamed THS, György B, Zsuzsanna K, Viktor B (2015) The Effect of thermo-oxidative aging on the durability of glass fiber-reinforced epoxy. Adv Mater Sci Eng 2015:1–13

    Article  Google Scholar 

  120. Jianjun Z, Liming X, Xiaomeng T, Wenxuan F, Xin Q (2019) Failure analysis and suggestions of composite insulators. IOP Conf Series: Earth Environ Sci 300:042040

    Google Scholar 

  121. Wang J, Xidong L, Yanfeng G (2014) Failure analysis of decay-like fracture of composite insulator. IEEE Trans Dielectr Electri Insul 21(6):2503–2511

    Article  Google Scholar 

  122. Yanfeng G, Xidong L, Weining B, Chao W, Shaohua L (2019) Degradation characteristics of epoxy resin of GFRP rod in the decay-like fracture of composite insulator. IEEE Trans Dielectr Electr Insul 26(1):107–114

    Article  Google Scholar 

  123. McCoy R (2004) SEM fractography and failure analysis of nonmetallic materials. J Fail Anal Prev 4:58–64

    Article  Google Scholar 

  124. Zhikang Y, Youping T, Yongfei Z (2019) Degradation behaviour and aging mechanism of decay-like fractured GRP rod in composite insulator. IEEE Trans Dielectr Electr Insul 26:1027–1034

    Article  Google Scholar 

  125. Ellyin F, Maser R (2004) Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos Sci Technol 64:1863–1874. https://doi.org/10.1016/j.compscitech.2004.01.017

    Article  CAS  Google Scholar 

  126. Cousin P, Hassan M, Vijay PV, Robert M, Benmokrane B (2019) Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars. J Compos Mater 53(26–27):3651–3670

    Article  CAS  Google Scholar 

  127. Papanicolaou GC, Kostopoulos V, Kontaxis LC, Kollia E, Kotrotsos A (2017) A comparative study between Epoxy/titania micro- and nanoparticulate composites thermal and mechanical behavior by means of particle–matrix interphase considerations. Polym Eng Sci 58(7):1146–1154

    Article  Google Scholar 

  128. Izzati WA, Arief YZ, Adzis Z, Shafanizam M (2014) Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci World J 2014:1–14. https://doi.org/10.1155/2014/735070

    Article  Google Scholar 

  129. Li Z, Okamoto K, Ohki Y, Tanaka T (2010) Effects of nanofillers addition on partial discharge resistance and dielectric breakdown strength of micro-Al2O3/epoxy composite. IEEE Trans Dielectr Electr Insul 17(3):653–661

    Article  CAS  Google Scholar 

  130. Tanaka T, Kuge S, Kozako M, Imai T, Ozaki T, Shimizu T (2006) Nano effects on PD endurance of epoxy nanocomposites. In Proceedings of the international conference on electrical engineering (ICEE ’06), p. 4, Yong Pyong Resort, Korea, 2006

Download references

Acknowledgements

The authors wish to thank the Centre for Energy and Power Tshwane University of Technology (TUT), South Africa, for their financial support in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ogbonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogbonna, V.E., Popoola, A.P.I., Popoola, O.M. et al. A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations. Polym. Bull. 79, 6857–6884 (2022). https://doi.org/10.1007/s00289-021-03846-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03846-z

Keywords

Navigation