Skip to main content
Log in

Prediction of mechanical and thermal properties in bronze-filled polyamide 66 composites using artificial neural network

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Microcomposites based on polyamide 66 (PA66) reinforced with bronze powder in low contents (3, 5 and, 7 wt%) were prepared in a co-rotating twin-screw extruder. Mechanical performance, including tensile characteristics, impact resistance, and Shore D hardness, was evaluated. The results indicated that the elongation at break and impact strength decreased with the increase in bronze loading, while the hardness reached a maximum (15% enhancement) when using 7 wt% of bronze powder. Scanning electron microscopy (SEM) was utilized to analyze the fracture surface and study the toughening mechanisms. The thermal expansion coefficient, as a good indicator of dimensional stability, was measured by applying thermomechanical analysis (TMA). The experimentally measured mechanical and thermal properties were modeled by an artificial neural network (ANN) method. The network was trained by Levenberg–Marquardt back-propagation (LMBP) in a single hidden layer which is consist of five neurons. Based on the excellent consistency between the ANN predictions and empirical results, ANN models can be considered as a reliable tool to estimate and evaluate material properties before synthesis and manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. AL-Oqla FM (2017) Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 24:2523–2530. https://doi.org/10.1007/s10570-017-1280-3

    Article  CAS  Google Scholar 

  2. AL-Oqla FM (2021) Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. J Polym Environ 29:892–899. https://doi.org/10.1007/s10924-020-01889-3

    Article  CAS  Google Scholar 

  3. AL-Oqla FM, El-Shekeil YA (2019) Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. J Clean Prod 222:865–870. https://doi.org/10.1016/j.jclepro.2019.03.042

    Article  CAS  Google Scholar 

  4. AL-Oqla FM, Hayajneh MT, Fares O (2019) Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. J Clean Prod 241:118256. https://doi.org/10.1016/j.jclepro.2019.118256

    Article  CAS  Google Scholar 

  5. AL-Oqla FM, Salit MS, Ishak MR, Aziz NA (2014) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources 9:4608–4621. https://doi.org/10.15376/biores.9.3.4608-4621

    Article  Google Scholar 

  6. AL-Oqla FM, Salit MS, Ishak MR, Aziz NA (2015) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10:299–312. https://doi.org/10.15376/biores.10.1.299-312

    Article  Google Scholar 

  7. AL-Oqla FM, Sapuan SM (2018) Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. J Polym Environ 26:1290–1296. https://doi.org/10.1007/s10924-017-1028-z

    Article  CAS  Google Scholar 

  8. AL-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. https://doi.org/10.1016/j.jclepro.2013.10.050

    Article  CAS  Google Scholar 

  9. AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54. https://doi.org/10.1016/j.synthmet.2015.04.014

    Article  CAS  Google Scholar 

  10. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2016) A decision-making model for selecting the most appropriate natural fiber—polypropylene-based composites for automotive applications. J Compos Mater 50:543–556. https://doi.org/10.1177/0021998315577233

    Article  Google Scholar 

  11. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int J Polym Anal Charact 20:191–205. https://doi.org/10.1080/1023666X.2015.990184

    Article  CAS  Google Scholar 

  12. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127. https://doi.org/10.1016/j.compag.2015.01.011

    Article  Google Scholar 

  13. AL-Oqla FM, Sapuan SM, Jawaid M (2016) Integrated mechanical-economic–environmental quality of performance for natural fibers for polymeric-based composite materials. J Nat Fibers 13:651–659. https://doi.org/10.1080/15440478.2015.1102789

    Article  CAS  Google Scholar 

  14. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, Al-Oqla FM (2019) Development of photovoltaic module with fabricated and evaluated novel backsheet-based biocomposite materials. Materials. https://doi.org/10.3390/ma12183007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, Al-Oqla FM (2019) Lightweight and durable PVDF-SSPF composites for photovoltaics backsheet applications: thermal, optical and technical properties. Materials. https://doi.org/10.3390/ma12132104

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alavitabari S, Mohamadi M, Javadi A, Garmabi H (2020) The effect of secondary nanofiller on mechanical properties and formulation optimization of HDPE/nanoclay/nanoCaCO3 hybrid nanocomposites using response surface approach. J Vinyl Addit Technol. https://doi.org/10.1002/vnl.21783

    Article  Google Scholar 

  17. Almagableh A, Al-Oqla FM, Omari MA (2017) Predicting the effect of nano-structural parameters on the elastic properties of carbon nanotube-polymeric based composites. Int J Performability Eng 13:73–86. https://doi.org/10.23940/ijpe.17.01.p6.7386

    Article  Google Scholar 

  18. Aridi NAM, Sapuan SM, Zainudin ES, AL-Oqla FM (2016) Mechanical and morphological properties of injection-molded rice husk polypropylene composites. Int J Polym Anal Charact 21:305–313. https://doi.org/10.1080/1023666X.2016.1148316

    Article  CAS  Google Scholar 

  19. Aridi NAM, Sapuan SM, Zainudin ES, AL-Oqla FM (2016) Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. Int J Polym Anal Charact 21:675–685. https://doi.org/10.1080/1023666X.2016.1207006

    Article  CAS  Google Scholar 

  20. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113

    CAS  Google Scholar 

  21. Bigg DM (1987) Mechanical properties of particulate filled polymers. Polym Compos 8:115–122. https://doi.org/10.1002/pc.750080208

    Article  CAS  Google Scholar 

  22. Chavarria F, Paul DR (2004) Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45:8501–8515. https://doi.org/10.1016/j.polymer.2004.09.074

    Article  CAS  Google Scholar 

  23. Fidan S, Oktay H, Polat S, Ozturk S (2019) An artificial neural network model to predict the thermal properties of concrete using different neurons and activation functions. Adv Mater Sci Eng. https://doi.org/10.1155/2019/3831813

    Article  Google Scholar 

  24. Ghosh K, Maiti SN (1996) Mechanical properties of silver-powder-filled polypropylene composites. Pharm Cryst Sci Eng 60:323–331. https://doi.org/10.1002/9781119046233.ch7

    Article  CAS  Google Scholar 

  25. Ghosh K, Maiti SN (1996) Correlation of tensile properties with crystallization parameters of PP in PP/Ag composites. Polym Plast Technol Eng 35:67–95. https://doi.org/10.1080/03602559608000082

    Article  CAS  Google Scholar 

  26. Gomez-Romero P (2001) Hybrid organic-inorganic materials—in search of synergic activity. Adv Mater 13:163–174. https://doi.org/10.1002/1521-4095(200102)13:3%3c163::AID-ADMA163%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  27. Gülsoy ÖH, Tasdemir M (2007) The effect of bronze particles on the physical and mechanical properties of Acrylonitrile-Butadiene-Styrene copolymer. Polym Plast Technol Eng 46:789–793. https://doi.org/10.1080/03602550701274185

    Article  CAS  Google Scholar 

  28. Hemath M, Mavinkere Rangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41:3940–3965. https://doi.org/10.1002/pc.25703

    Article  CAS  Google Scholar 

  29. Jiang Z, Gyurova L, Zhang Z, Friedrich K, Schlarb AK (2008) Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Mater Des 29:628–637. https://doi.org/10.1016/j.matdes.2007.02.008

    Article  CAS  Google Scholar 

  30. Jozwik J, Dziedzic K, Barszcz M, Pashechko M (2020) Analysis and comparative assessment of basic tribological properties of selected polymer composites. Materials. https://doi.org/10.3390/ma13010075

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khanam PN, Almaadeed M, Almaadeed S, Kunhoth S, Ouederni M, Sun D, Hamilton A, Jones EH, Mayoral B (2016) Optimization and prediction of mechanical and thermal properties of Graphene/LLDPE nanocomposites by using artificial neural networks. Int J Polym Sci. https://doi.org/10.1155/2016/5340252

    Article  Google Scholar 

  32. Kushvaha V, Kumar SA, Madhushri P, Sharma A (2020) Artificial neural network technique to predict dynamic fracture of particulate composite. J Compos Mater 54:3099–3108. https://doi.org/10.1177/0021998320911418

    Article  Google Scholar 

  33. Lin B, Thumen A, Heim H-P, Scheel G, Sundararaj U (2009) Nylon 66/clay nanocomposite structure development in a twin screw extruder. Polym Eng Sci 49:824–834. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  34. Liu W, Cao C (2009) Artificial neural network prediction of glass transition temperature of polymers. Colloid Polym Sci 287:811–818. https://doi.org/10.1007/s00396-009-2035-y

    Article  CAS  Google Scholar 

  35. Moghri M, Shahabadi SIS, Madic M (2016) Modeling tensile modulus of (polyamide 6)/nanoclay composites: response surface method vs. taguchi-optimized artificial neural network. J Vinyl Addit Technol 22:29–36. https://doi.org/10.1002/vnl

    Article  CAS  Google Scholar 

  36. Mysiukiewicz O, Kosmela P, Barczewski M, Hejna A (2020) Mechanical, thermal and rheological properties of polyethylene-based composites filled with micrometric aluminum powder. Materials 13:1242–1259. https://doi.org/10.3390/ma13051242

    Article  CAS  PubMed Central  Google Scholar 

  37. Pourrahmani H, Golparvar M, Fasihi M (2020) A new evaluation criterion for optimizing the mechanical properties of toughened polypropylene/silica nanocomposites. Chin J Polym Sci 38:877–887. https://doi.org/10.1007/s10118-020-2399-5

    Article  CAS  Google Scholar 

  38. Sharma A, Anand Kumar S, Kushvaha V (2020) Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network. Eng Fract Mech 228:106907–106918. https://doi.org/10.1016/j.engfracmech.2020.106907

    Article  Google Scholar 

  39. Sharma A, Kushvaha V (2020) Predictive modelling of fracture behaviour in silica-filled polymer composite subjected to impact with varying loading rates using artificial neural network. Eng Fract Mech 239:107328. https://doi.org/10.1016/j.engfracmech.2020.107328

    Article  Google Scholar 

  40. Shen L, Phang IY, Liu T, Zeng K, Chen L, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II Effect of strain rater. Polymer 45:3341–3349. https://doi.org/10.1016/j.polymer.2004.09.062

    Article  CAS  Google Scholar 

  41. Taşdemir M, Gülsoy HÖ (2008) Mechanical properties of polymers filled with iron powder. Int J Polym Mater Polym Biomater 57:258–265. https://doi.org/10.1080/00914030701473656

    Article  CAS  Google Scholar 

  42. Tavman IH (1996) Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites. J Appl Polym Sci 62:2161–2167. https://doi.org/10.1002/(sici)1097-4628(19961219)62:12%3c2161::aid-app19%3e3.3.co;2-a

    Article  CAS  Google Scholar 

  43. Tavman IH (1997) Thermal and mechanical properties of copper powder filled poly(ethylene) composites. Powder Technol 91:63–67. https://doi.org/10.1016/S0032-5910(96)03247-0

    Article  CAS  Google Scholar 

  44. Wani I, Kumar H, Rangappa SM, Peng L, Siengchin S, Kushvaha V (2021) Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J Hazardous, Toxic, Radioact Waste 25:04020007. https://doi.org/10.1061/(asce)hz.2153-5515.0000561

    Article  Google Scholar 

  45. Wani I, Sharma A, Kushvaha V, Madhushri P, Peng L (2020) Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazardous Toxic Radioact Waste 24:04020048. https://doi.org/10.1061/(asce)hz.2153-5515.0000545

    Article  CAS  Google Scholar 

  46. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  47. Yoon PJ, Fornes TD, Paul DR (2002) Thermal expansion behavior of nylon 6 nanocomposites. Polymer 43:6727–6741. https://doi.org/10.1016/S0032-3861(02)00638-9

    Article  CAS  Google Scholar 

  48. Zhang Z, Barkoula NM, Karger-Kocsis J, Friedrich K (2003) Artificial neural network predictions on erosive wear of polymers. Wear 255:708–713. https://doi.org/10.1016/S0043-1648(03)00149-2

    Article  CAS  Google Scholar 

  49. Zhang Z, Cao M, Chen P, Yang B, Wu B, Miao J, Xia R, Qian J (2019) Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface. Mater Des 177:107835–110745. https://doi.org/10.1016/j.matdes.2019.107835

    Article  CAS  Google Scholar 

  50. Zhang Z, Friedrich K (2003) Artificial neural networks applied to polymer composites: a review. Compos Sci Technol 63:2029–2044. https://doi.org/10.1016/S0266-3538(03)00106-4

    Article  CAS  Google Scholar 

  51. Zhang Z, Klein P, Friedrich K (2002) Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction. Compos Sci Technol 62:1001–1009. https://doi.org/10.1016/S0266-3538(02)00036-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Mohamadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, M., Alavitabari, S. & Aliasghary, M. Prediction of mechanical and thermal properties in bronze-filled polyamide 66 composites using artificial neural network. Polym. Bull. 79, 4905–4921 (2022). https://doi.org/10.1007/s00289-021-03751-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03751-5

Keywords

Navigation