Skip to main content
Log in

Surfactant-free one-step fabrication of gelatin/PAAm/MWCNT composites for biomedical applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Well-dispersed multiwalled carbon nanotube (MWCNT) and gelatin-enhanced polyacrylamide (PAAm) composites were synthesized via a free-radical copolymerization method. MWCNTs were added to the composite mixture in various amounts (0.5 mg, 1.0 mg, 1.5 mg, and 2.0 mg) during the nucleation process in order to increase the conductivity. Gelatin/PAAm/MWCNT composites containing different amounts of MWCNTs were then characterized using the ultraviolet–visible (UV–vis) spectroscopic technique to illuminate the dispersibility, and optical properties of the composites. Bandgap energies were evaluated by measuring the absorbance spectra of the composites in a quartz cuvette of the UV–vis spectrophotometer. By calculating the resonance ratio and normalized width values from the absorption response of the composites according to the wavelength, the dispersion rate of the MWCNTs in the composite matrix was determined. The proper ultra-sonication process has been realized so as to maintain the good dispersion of the MWCNTs inside the polymeric matrix lowering the normalized width and increasing the resonance ratio. Polymeric composite materials based on carbon nanotubes are of considerable interest for a variety of biomedical applications. Furthermore, in this work, it is argued that the use of gelatin, another biocompatible material, together with MWCNT makes the properties of the formed composite, suitable for the desired biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gerasimenko AY, Ichkitidze LP, Podgaetsky VM, Selishchev SV (2015) Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed Eng 48:310–314. https://doi.org/10.1007/s10527-015-9476-z

    Article  Google Scholar 

  2. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203–221. https://doi.org/10.3390/nano4020203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stout DA, Webster TJ (2012) Carbon nanotubes for stem cell control. Mater Today 15:312–318. https://doi.org/10.1016/S1369-7021(12)70136-0

    Article  CAS  Google Scholar 

  4. Maiti D, Tong X, Mou X, Yang K (2018) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401. https://doi.org/10.3389/fphar.2018.01401

    Article  CAS  PubMed  Google Scholar 

  5. Silversmith EF (1992) Free-radical polymerization of acrylamide. J Chem Educ 69(9):763. https://doi.org/10.1021/ed069p763.1

    Article  CAS  Google Scholar 

  6. Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI (2016) Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 5(2):177–211. https://doi.org/10.1002/mbo3.334

    Article  PubMed  PubMed Central  Google Scholar 

  7. Banga JP (1998) Encyclopedia of immunology, 2nd edn. Academic Press, pp 2143–2144. https://www.elsevier.com/books/encyclopedia-of-immunology/9780122267659

  8. Christensen LH, Breiting VB, Aasted A, Jørgensen A, Kebuladze I (2003) Long-term effects of polyacrylamide hydrogel on human breast tissue. Plast Reconstr Surg 111(6):1883–1890. https://doi.org/10.1097/01.PRS.0000056873.87165.5A

    Article  PubMed  Google Scholar 

  9. Vasile C, Pamfil D, Stoleru E, Baican M (2020) New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 25(7):1539. https://doi.org/10.3390/molecules25071539

    Article  CAS  PubMed Central  Google Scholar 

  10. Anderson JM (1986) Polymeric biomaterials. Martinus Nijhoff Publishers, Boston, pp 29–39

    Book  Google Scholar 

  11. Serrano MC, Pagani R, Vallet-Regí M, Peña J, Rámila A, Izquierdo I, Portolés MT (2004) In vitro biocompatibility assessment of poly (ε-caprolactone) films using L929 mouse fibroblasts. Biomaterials 25:5603–5611

    Article  CAS  Google Scholar 

  12. Akiyama Y, Kikuchi A, Yamato M, Okano T (2014) Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide). Acta Biomaterialia 10(8):3398–3408. https://doi.org/10.1016/j.actbio.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  13. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674. https://doi.org/10.3390/ma3063654

    Article  CAS  PubMed Central  Google Scholar 

  14. Madni I, Hwang CY, Park SD, Choa YH, Kim HT (2010) Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf A: Physicochem Eng Asp 358(1–3):101–107. https://doi.org/10.1016/j.colsurfa.2010.01.030

    Article  CAS  Google Scholar 

  15. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Rep 49(4):89–112. https://doi.org/10.1016/j.mser.2005.04.002

    Article  CAS  Google Scholar 

  16. Ishaq A, Sobia AR, Yan L (2010) Effect of ion irradiation on the properties of carbon nanotube buckypapers. J Exp Nanosci 5(3):213–220. https://doi.org/10.1080/17458080903465162

    Article  CAS  Google Scholar 

  17. Kim Y, Torrens ON, Kikkawa JM, Abou-Hamad E, GozeBac C, Luzzi DE (2007) High-purity diamagnetic single-wall carbon nanotube buckypaper. Chem Mater 19(12):2982–2986. https://doi.org/10.1021/cm063006h

    Article  CAS  Google Scholar 

  18. Grossiord N, Loos J, Van Laake L, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube filers. Adv Func Mater 18(20):3226–3234. https://doi.org/10.1002/adfm.200800528

    Article  CAS  Google Scholar 

  19. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123(27):6536–6542. https://doi.org/10.1021/ja010462s

    Article  CAS  PubMed  Google Scholar 

  20. McNally T, Pötschke P (eds) (2011) Polymer-carbon nanotube composites: preparation, properties and applications. Elsevier. https://www.elsevier.com/books/polymer-carbon-nanotube-composites/mcnally/978-1-84569-761-7

  21. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4(1):275–295. https://doi.org/10.3390/polym4010275

    Article  CAS  Google Scholar 

  22. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  23. Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7:1174–1196. https://doi.org/10.3762/bjnano.7.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. LiaoY-H M-T, Liang Z, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng, A 385(1–2):175–181. https://doi.org/10.1016/j.msea.2004.06.031

    Article  CAS  Google Scholar 

  25. Njuguna J, Vanli OA, Liang RA (2015) Review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J Spectrosc 463156:1–11. https://doi.org/10.1155/2015/463156

    Article  CAS  Google Scholar 

  26. Islam T, Salem KS, Biswas S, Haque P, Rimu SH, Rahman MM (2018) Preparation of carbon nanotube reinforced gelatin-chitosan- hydroxyapatite biocomposite for bone tissue engineering. Open Access J Biomed Eng Biosci 1(3):66–72

    Google Scholar 

  27. Kavoosi G, Dadfar SMM, Dadfar SMA, Ahmadi F, Niakosari M (2014) Investigation of gelatin/multi-walled carbon nanotube nanocomposite films as packaging materials. Food Sci Nutr 2(1):65–73. https://doi.org/10.1002/fsn3.81

    Article  CAS  PubMed  Google Scholar 

  28. Sun X, Qin Z, Ye L, Zhang H, Yu Q, Wu X, Li J, Yao F (2020) Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem Eng J 382:122832. https://doi.org/10.1016/j.cej.2019.122832

    Article  CAS  Google Scholar 

  29. Gorgieva S, Kokol V (2011) Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. Biomaterials applications for nanomedicine. InTech. https://www.intechopen.com/books/biomaterials-applications-for-nanomedicine/collagen-vs-gelatine-based-biomaterials-and-their-biocompatibilityreview-and-perspectives

  30. Lai JY (2010) Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J Mater Sci: Mater Med 21:1899–1911. https://doi.org/10.1007/s10856-010-4035-3

    Article  CAS  Google Scholar 

  31. Yang G, Xiao Z, Long H et al (2018) Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 8:1616. https://doi.org/10.1038/s41598-018-20006-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi F-L, Meng F-C, Li Y-Q, Huang P, Hu N, Liao K, Fu S-Y (2020) Highly stretchable CNT Fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor. Eng Comp Part B 198:108246. https://doi.org/10.1016/j.compositesb.2020.108246

    Article  CAS  Google Scholar 

  33. Cao N, Yang X, Fu Y (2009) Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll 23:729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017

    Article  CAS  Google Scholar 

  34. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources. Food Hydrocoll 25:1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  35. Dassios KG, Alafogianni P, Antiohos SK, Leptokaridis C, Barkoula NM, Matikas TE (2015) Optimization of sonication parameters for homogeneous surfactant-assisted dispersion of multiwalled carbon nanotubes in aqueous solutions. J Phys Chem C 119(13):7506–7516. https://doi.org/10.1021/acs.jpcc.5b01349

    Article  CAS  Google Scholar 

  36. Alafogianni P, Dassios K, Farmaki S, Antiohos SK, Matikas TE, Barkoula NM (2016) On the efficiency of UV–vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes. Coll Surf: Physicochem Eng Asp 495:118–124. https://doi.org/10.1016/j.colsurfa.2016.01.053

    Article  CAS  Google Scholar 

  37. International Union of Pure and Applied Chemistry-IUPAC (1997) Compendium of Chemical Terminology, 2nd edn. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford Online version (2019-) https://doi.org/https://doi.org/10.1351/goldbook.

  38. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94. https://doi.org/10.1016/S0021-9797(02)00176-5

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad M, Benjakul S, Prodpran T, Agustini TW (2012) Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll 28:189–199. https://doi.org/10.1016/j.foodhyd.2011.12.003

    Article  CAS  Google Scholar 

  40. Voge CM, Johns J, Raghavan M, Morris MD, Stegemann JP (2013) Wrapping and dispersion of multi-walled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. J Biomed Mater Res A 101:231–238. https://doi.org/10.1002/jbm.a.34310

    Article  CAS  PubMed  Google Scholar 

  41. Garrido T, Penalba M, de la Caba K, Guerrero P (2016) Injection-manufactured biocomposites from extruded soy protein with algae waste as a filler. Compos B 86:197–202. https://doi.org/10.1016/j.compositesb.2015.09.058

    Article  CAS  Google Scholar 

  42. Ohring M (2002) Materials science of thin films: epitaxy, 2nd edn. Academic Press, pp 417–494. https://www.sciencedirect.com/book/9780125249751/materials-science-of-thin-films

  43. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley. https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics%2C+8th+Edition-p-9780471415268

  44. Soroush M, Lau KK (eds) (2019) Dye-sensitized solar cells: mathematical modelling, and materials design and optimization. Academic Press, pp 51–81. https://www.sciencedirect.com/book/9780128145418/dye-sensitized-solar-cells

  45. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  46. Tan Y, Resasco DE (2005) Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J Phys Chem B 109(30):14454–14460. https://doi.org/10.1021/jp052217r

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengü Özuğur Uysal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Düzkan, B., Uysal, B.Ö. & Pekcan, Ö. Surfactant-free one-step fabrication of gelatin/PAAm/MWCNT composites for biomedical applications. Polym. Bull. 79, 1597–1614 (2022). https://doi.org/10.1007/s00289-021-03574-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03574-4

Keywords

Navigation