Skip to main content
Log in

Cytotoxic potential and antiparasitic activity of the Croton rhamnifolioides Pax leaves. & K. Hoffm essential oil and its inclusion complex (EOCr/β-CD)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Leishmaniasis and Chagas disease are neglected tropical diseases with relevance and public interest. Currently, the search for antiparasitic agents from medicinal plants has been the target of great research. Croton rhamnifolioides Pax. & K. Hoffm is known in popular medicine as “quebra-faca” or “caatinga-branca” and is used to treat stomachache, vomiting and fever. The aim of this study was to evaluate the cytotoxic potential and antiparasitic activity of the Croton rhamnifolioides Pax leaves. & K. Hoffm essential oil (EOCr) and its inclusion complex with β-cyclodextrin (EOCr/β-CD). The trypanocide, leishmanicidal and cytotoxicity activity investigations were performed in triplicates by in vitro cell culture assays using different EOCr (1000, 500, 250, 125, 62.5 μg/mL) and EOCr/β-CD (1000, 500 and 250 μg/mL) concentrations dissolved in dimethyl sulfoxide. The results showed the EOCr and EOCr/β-CD possessed an inhibitory potential with IC50 values of 85.21 and 1823 μg/mL against T. cruzi, IC50 values of 127.43 and 354.568 μg/mL against Leishmania braziliensis and IC50 values of 111.84 and 923.56 μg/mL against Leishmania infantum, respectively, with the EOCr being the most effective against T. cruzi. The EOCr presented toxic effects against NCTC929 fibroblasts at the highest concentrations of 1000 and 500 μg/mL, obtaining an IC50 value of 338.84 μg/mL; however, the EOCr/β-CD showed no signs of significant cytotoxicity obtaining an IC50 greater than 1000 μg/mL. The current results suggest the C. rhamnifolioides essential oil presents significant results, thus representing an alternative source for the development of natural products with antiparasitic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar CL (2001) Ciclodextrina glicosiltransferase, produção, ação e aplicação. Boletim do Centro de Pesquisa de Processamento de Alimentos 19:119–138

    Article  Google Scholar 

  2. Asqua RODIP, Etts GAILB, Oskins NIH, Dwards MIKEE, Rcolini DAE, Auriello GIM et al (2007) Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 55:4863–70

    Article  Google Scholar 

  3. Buckner FS, Verlinde CLMJ, Flamme ACLA (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597

    Article  CAS  Google Scholar 

  4. Paixão ACM, Figueiras AR (2016) Cyclodextrins as a new therapeutic approach to drug delivery in the colon. Boletim Informativo Geum 7:1–11

    Google Scholar 

  5. Chaves IS, Rodrigues SG, Melo NFS, de Jesus MB, Fraceto LF, de Paula E et al (2010) Alternatives for the treatment of schistosomiasis: physico-chemical characterization of an inclusion complex between praziquantel and hydroxypropyl-beta-cyclodextrin. Lat Am J Pharm 29:1067–1074

    CAS  Google Scholar 

  6. Cunha-Filho MSS, Sá-Barreto LCL (2007) Utilização de ciclodextrinas na formação de complexos de inclusão de interesse farmacêutico. Rev Ciencias Farm Basica e Apl 28:1–9

    CAS  Google Scholar 

  7. Da Costa ACV, Do Amarante Melo GF, Madruga MS, Da Costa JGM, Junior FG, Neto VQ (2013) Chemical composition and antibacterial activity of essential oil of a Croton rhamnifolioides leaves Pax & Hoffm. Semin Agrar 34:2853–2864

    Article  Google Scholar 

  8. Garchitorena A, Sokolow SH, Roche B, Ngonghala CN, Jocque M, Lund A et al (2017) Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philos Trans R Soc Lond BBiol Sci. 372:20160128

    Article  Google Scholar 

  9. Grande C (2017) Ciência Rural. Santa Maria 47:1–4

    Google Scholar 

  10. Kpadonou D, Kpoviessi SE, Bero J, Agbani P, Gbaguidi F, Kpadonou-Kpoviessi BE et al (2019) Chemical composition, in vitro antioxidant and antiparasitic properties of the essential oils of three plants used in traditional medicine in Benin. J Med Plants Res 13:384–395

    Article  CAS  Google Scholar 

  11. Laura O, Almeida S (2011) Avanços no tratamento da leishmaniose tegumentar do novo mundo nos últimos dez anos: uma revisão sistemática. An Bras Dermatol 86:497–506

    Article  Google Scholar 

  12. Le-Senne A, Muelas-Serrano S, Fernández-Portillo C, Escario JA, Gomez-Barrio A (2002) Biological characterization of a β-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem Inst Oswaldo Cruz 97:1101–1105

    Article  Google Scholar 

  13. Machado M, Dinis AM, Santos-rosa M, Alves V, Salgueiro L (2014) Veterinary parasitology activity of thymus capitellatus volatile extract, 1, 8-cineole and borneol against Leishmania species. Vet Parasitol 200:39–49

    Article  CAS  Google Scholar 

  14. Machado M, Santoro G, Sousa MC, Salgueiro L, Cavaleiro C (2010) Activity of essential oils on the growth of Leishmania infantum promastigotes. Flavour Fragr J 25:156–160

    Article  CAS  Google Scholar 

  15. Martins AOBPM, Wanderley AG, Alcântara IS, Rodrigues LB, Cesário FRA, Oliveira MRC et al (2020) Anti-Inflammatory and Physicochemical Characterization of the Croton Rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin. Biology 9:114

    Article  CAS  Google Scholar 

  16. Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS et al (2014) Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim 115:2429–2437

    Article  CAS  Google Scholar 

  17. Neves DP (2016) Parasitologia humana, vol 13. São Paulo, pp 47–54

  18. Nibret E, Wink M (2010) Phytomedicine Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Eur J Integr Med 17:911–920

    CAS  Google Scholar 

  19. Pereira PS, Maia AJ, Tintino SR, Oliveira-Tintino CDDM, Raulino ISDS, Vega MC, Rolón M et al (2017) Trypanocide, antileishmania and cytotoxic activities of the essential oil from Rosmarinus officinalis L in vitro. Ind Crop Prod 109:724–729

    Article  CAS  Google Scholar 

  20. Pereira PS, Maia AJ, Duarte AE, Oliveira-Tintino CDM, Tintino SR, Barros LM et al (2018) Cytotoxic and anti-kinetoplastid potential of the essential oil of Alpinia speciosa K. Schum Food Chem Toxicol 119:387–391

    Article  CAS  Google Scholar 

  21. Raj S, Sasidharan S, Balaji SN, Dubey VK, Saudagar P (2020) Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. J Proteins Proteom 11:135–158

    Article  Google Scholar 

  22. Randau KP, Florêncio DC, Ferreira CP, Xavier HS (2004) Pharmacognostic study of Croton rhamnifolius HBK and Croton rhamnifolioides Pax & Hoffm. (Euphorbiaceae). Rev Bras Farmacogn 14:89–96

    Article  Google Scholar 

  23. Rath S, Trivelin LA, Imbrunito TR, Tomazela DM, Jesús MND, Marzal PC, Tempone AG (2003) Antimoniais empregados no tratamento da leishmaniose: estado da arte. Química Nova 26:550–555

    Article  CAS  Google Scholar 

  24. Stokes SL, Cole RA, Rangelova MP, Haber A, Setzer WN (2007) Cruzain Inhibitory Activity of the Leaf Essential Oil from an Undescribed Species of Eugenia from Monteverde, Costa Rica. Natural Product Communications 2:1211–1213

    CAS  Google Scholar 

  25. Rodrigues LJ (2012) Desenvolvimento de comprimido contendo associação de óleo essencial de Mentha crispa L. e albendazol para tratamento de poliparasitoses.UFPE, MSc Thesis

  26. Rodrigues IA, Azevedo MMB, Chaves FCM, Bizzo HR, Corte-real S, Alviano DS et al (2013) In vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7-hydroxycalamenene against Leishmania chagasi. BMC Complement Altern Med 13:249

    Article  Google Scholar 

  27. Roldos V, Nakayama H, Rolón M, Montero-Torres A, Trucco F, Torres S et al (2008) Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: in silico, in vitro and in vivo activity studies. Eur J Med Chem 43:1797–1807

    Article  CAS  Google Scholar 

  28. Rolón M, Seco EM, Vega C, Nogal JJ, Escario JA, Gómez-Barrio A et al (2006) Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents 28:104–109

    Article  Google Scholar 

  29. Santos GKN, Dutra KA, Lira CS, Lima BN, Napoleão TH, Paiva PMG et al (2014) Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules 19:16573–16587

    Article  Google Scholar 

  30. Serafini MR, Guimarães AG, Quintans JSS, Araújo AAS, Nunes PS, Quintans-Júnior LJ (2015) Natural compounds for solar photoprotection: a patent review. Expert Opin Ther Pat 25:467–478

    Article  CAS  Google Scholar 

  31. Valle-Reyes JS, Melnikov V, Dobrovinskaya O, Rodriguez-Hernández A, Wookee-Zea C, Pimientel-Rodrigez V et al (2017) Antiprotozoal drug nitazoxanide enhances parasitemia, tissue lesions and mortality caused by Trypanosoma cruzi in murine model. Exp Parasitol 172:44–50

    Article  CAS  Google Scholar 

  32. Vega C, Rolón M, Martínez-Fernández A, Escario J (2005) Gómez-Barrio AJPr A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol Res 95:296–298

    Article  CAS  Google Scholar 

  33. Veiga VF, Pinto AC, Maciel MAM (2005) Medicinal plants: safe cure? Quim Nova 28:519–528

    Article  CAS  Google Scholar 

  34. Vidal CS, Martins AOBPB, de Alencar Silva A, de Oliveira MRC, Ribeiro-Filho J et al (2017) Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed Pharmacother 96:384–395

    Article  Google Scholar 

  35. Vitti AMS, Brito JO (2003) Oléo essencial de eucalipto. Doc Florestais 17:1–26

    Google Scholar 

  36. WHO (2012) Book review: working to overcome the global impact of neglected tropical diseases. Perspect Public Health 132: 192–192

Download references

Acknowledgements

The authors would like to thank the financial support provided by the FACEPE, CAPES, CNPq and FUNCAP institutions.

Funding

The authors declare that they have no funding to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrique Douglas Melo Coutinho or Irwin Rose Alencar de Menezes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcântara, I.S., Martins, A.O.B.P.B., de Oliveira, M.R.C. et al. Cytotoxic potential and antiparasitic activity of the Croton rhamnifolioides Pax leaves. & K. Hoffm essential oil and its inclusion complex (EOCr/β-CD). Polym. Bull. 79, 1175–1185 (2022). https://doi.org/10.1007/s00289-021-03556-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03556-6

Keywords

Navigation