Skip to main content
Log in

Nitroxide-mediated polymerization of styrene and limonene in the framework of synthesis of potentially functional polymers using naturally occurring terpenes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the framework of synthesis of potentially functional macromolecules based on commodity polymers with naturally occurring compounds, the nitroxide-mediated polymerization of styrene with limonene was investigated here. Various ratios of styrene and limonene were used, and the incorporation of limonene in the final polymer was monitored. Results from benzoyl peroxide/TEMPO-initiated polymerization showed small incorporation of limonene in the polystyrene chains, while it was also involved in forming oligomers (such as dimers or trimers). The presence of limonene resulted in a reduction in polymer average molecular weight through chain transfer reactions. From the kinetic analysis, limonene was found to inhibit styrene thermal auto-polymerization at high temperatures, acting as a radical scavenger. Using TEMPO-functionalized polystyrene macroinitiators to initiate the polymerization, no limonene oligomers in the final product were observed. Finally, when polystyrene macroinitiators and limonene were reacted in the absence of styrene monomer, limonene moieties were identified in the final polymer, resulting thus in polystyrene functionalization. This functionalization can be extended to the synthesis of novel materials based on naturally occurring terpenes, considering the variety of structures that can be obtained by applying NMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. https://doi.org/10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  2. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37. https://doi.org/10.1002/marc.201200513

    Article  CAS  PubMed  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  4. Marín FR, Soler-Rivas C, Benavente-García O et al (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100:736–741. https://doi.org/10.1016/j.foodchem.2005.04.040

    Article  CAS  Google Scholar 

  5. Ciriminna R, Lomeli-Rodriguez M, DemmaCarà P et al (2014) Limonene: a versatile chemical of the bioeconomy. Chem Commun 50:15288–15296. https://doi.org/10.1039/C4CC06147K

    Article  CAS  Google Scholar 

  6. Hauenstein O, Reiter M, Agarwal S et al (2016) Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chem 18:760–770. https://doi.org/10.1039/C5GC01694K

    Article  CAS  Google Scholar 

  7. Martín C, Kleij AW (2016) Terpolymers derived from limonene oxide and carbon dioxide: access to cross-linked polycarbonates with improved thermal properties. Macromolecules 49:6285–6295. https://doi.org/10.1021/acs.macromol.6b01449

    Article  CAS  Google Scholar 

  8. Stößer T, Li C, Unruangsri J et al (2017) Bio-derived polymers for coating applications: comparing poly (limonene carbonate) and poly (cyclohexadiene carbonate). Polym Chem 8:6099–6105. https://doi.org/10.1039/C7PY01223C

    Article  Google Scholar 

  9. Parrino F, Fidalgo A, Palmisano L et al (2018) Polymers of limonene oxide and carbon dioxide: polycarbonates of the solar economy. ACS Omega 3:4884–4890. https://doi.org/10.1021/acsomega.8b00644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rehman A, López Fernández AM, GunamResul MFM, Harvey A (2019) Highly selective, sustainable synthesis of limonene cyclic carbonate from bio-based limonene oxide and CO2: a kinetic study. J Util CO2 29:126–133. https://doi.org/10.1016/j.jcou.2018.12.001

    Article  CAS  Google Scholar 

  11. Thomsett MR, Moore JC, Buchard A et al (2019) New renewably-sourced polyesters from limonene-derived monomers. Green Chem 21:149–156. https://doi.org/10.1039/C8GC02957A

    Article  CAS  Google Scholar 

  12. Claudino M, Jonsson M, Johansson M (2013) Thiol-ene coupling kinetics of d-limonene: a versatile ‘non-click’ free-radical reaction involving a natural terpene. RSC Adv 3:11021. https://doi.org/10.1039/c3ra40696b

    Article  CAS  Google Scholar 

  13. Claudino M, Mathevet J-M, Jonsson M, Johansson M (2014) Bringing d-limonene to the scene of bio-based thermoset coatings via free-radical thiol-ene chemistry: macromonomer synthesis, UV-curing and thermo-mechanical characterization. Polym Chem 5:3245–3260. https://doi.org/10.1039/C3PY01302B

    Article  CAS  Google Scholar 

  14. Drozdov FV, Tarasenkov AN, Cherkaev GV et al (2019) Synthesis and properties of prepolymers and their siloxane analogues by thiol-ene polyaddition of limonene with dithiols. Polym Int 68:2017–2023. https://doi.org/10.1002/pi.5913

    Article  CAS  Google Scholar 

  15. Roberts WJ, Day AR (1950) A study of the polymerization of α and β-pinene with friedel—crafts type catalysts. J Am Chem Soc 72:1226–1230. https://doi.org/10.1021/ja01159a044

    Article  CAS  Google Scholar 

  16. Modena M, Bates RB, Marvel CS (1965) Some low molecular weight polymers of d-limonene and related terpenes obtained by Ziegler-type catalysts. J Polym Sci A 3:949–960. https://doi.org/10.1002/pol.1965.100030309

    Article  CAS  Google Scholar 

  17. Mathers RT, Meier MAR (2011) Green polymerization methods: renewable starting materials, catalysis and waste reduction. Wiley, Weinheim

    Book  Google Scholar 

  18. Andriotis EG, Achilias DS (2013) Optimizing the synthesis of bio-based polymers using naturally occurring monomers by response surface methodology. Fresenius Environ Bull 22:3808–3814

    CAS  Google Scholar 

  19. Andriotis EG, Achilias DS (2013) Role of polylimonene as a bio-based additive in thermal oxidation of high impact polystyrene. In: Macromolecular symposia. Wiley Online Library, pp 173–180

  20. Singh A, Kamal M (2012) Synthesis and characterization of polylimonene: polymer of an optically active terpene. J Appl Polym Sci 125:1456–1459. https://doi.org/10.1002/app.36250

    Article  CAS  Google Scholar 

  21. Satoh K, Matsuda M, Nagai K, Kamigaito M (2010) AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J Am Chem Soc 132:10003–10005. https://doi.org/10.1021/ja1042353

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda M, Satoh K, Kamigaito M (2013) 1:2-Sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. J Polym Sci Part Polym Chem 51:1774–1785. https://doi.org/10.1002/pola.26556

    Article  CAS  Google Scholar 

  23. Matsuda M, Satoh K, Kamigaito M (2013) Periodically functionalized and grafted copolymers via 1:2-sequence-regulated radical copolymerization of naturally occurring functional limonene and maleimide derivatives. Macromolecules 46:5473–5482. https://doi.org/10.1021/ma401021d

    Article  CAS  Google Scholar 

  24. Ojika M, Satoh K, Kamigaito M (2017) BAB–random–c monomer sequence via radical terpolymerization of limonene (a), maleimide (b), and methacrylate (c): terpene polymers with randomly distributed periodic sequences. Angew Chem Int Ed 56:1789–1793. https://doi.org/10.1002/anie.201610768

    Article  CAS  Google Scholar 

  25. Sharma S, Srivastava AK (2003) Radical copolymerization of limonene with acrylonitrile: kinetics and mechanism. Polym Plast Technol Eng 42:485–502. https://doi.org/10.1081/PPT-120017966

    Article  CAS  Google Scholar 

  26. Sharma S, Srivastava AK (2003) Alternating copolymers of limonene with methyl methacrylate: kinetics and mechanism. J Macromol Sci Part A 40:593–603. https://doi.org/10.1081/MA-120020867

    Article  CAS  Google Scholar 

  27. Sharma S, Srivastava AK (2004) Synthesis and characterization of copolymers of limonene with styrene initiated by azobisisobutyronitrile. Eur Polym J 40:2235–2240. https://doi.org/10.1016/j.eurpolymj.2004.02.028

    Article  CAS  Google Scholar 

  28. Sharma S, Srivastava AK (2007) Azobisisobutyronitrile-initiated free-radical copolymerization of limonene with vinyl acetate: synthesis and characterization. J Appl Polym Sci 106:2689–2695. https://doi.org/10.1002/app.24205

    Article  CAS  Google Scholar 

  29. Zhang Y, Dubé MA (2014) Copolymerization of n-butyl methacrylate and d-limonene. Macromol React Eng 8:805–812. https://doi.org/10.1002/mren.201400023

    Article  CAS  Google Scholar 

  30. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, Hoboken

    Book  Google Scholar 

  31. Matyjaszewski K, Gnanou Y, Leibler L (2007) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley, Weinheim

    Book  Google Scholar 

  32. Matsakidou A, Blekas G, Paraskevopoulou A (2010) Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT Food Sci Technol 43:949–957. https://doi.org/10.1016/j.lwt.2010.02.002

    Article  CAS  Google Scholar 

  33. Zhang Y, Dubé MA (2015) Copolymerization of 2-ethylhexyl acrylate and d-limonene. Polym Plast Technol Eng 54:499–505. https://doi.org/10.1080/03602559.2014.961080

    Article  CAS  Google Scholar 

  34. Ren S, Trevino E, Dubé MA (2015) Copolymerization of limonene with n-butyl acrylate. Macromol React Eng 9:339–349. https://doi.org/10.1002/mren.201400068

    Article  CAS  Google Scholar 

  35. Nabifar A, McManus NT, Vivaldo-Lima E et al (2008) A replicated investigation of nitroxide-mediated radical polymerization of styrene over a range of reaction conditions. Can J Chem Eng 86:879–892. https://doi.org/10.1002/cjce.20092

    Article  CAS  Google Scholar 

  36. Nabifar A, McManus NT, Vivaldo-Lima E et al (2009) Thermal polymerization of styrene in the presence of TEMPO. Chem Eng Sci 64:304–312. https://doi.org/10.1016/j.ces.2008.10.013

    Article  CAS  Google Scholar 

  37. Mathers RT, McMahon KC, Damodaran K et al (2006) Ring-opening metathesis polymerizations in d-limonene: a renewable polymerization solvent and chain transfer agent for the synthesis of alkene macromonomers. Macromolecules 39:8982–8986. https://doi.org/10.1021/ma061699h

    Article  CAS  Google Scholar 

  38. Nakatani H, Ichizyu T, Miura H, Terano M (2010) Preparation of modified polybutene-1 by oxidation and limonene radical grafting using an Nd2O3-assisted radical initiator system and its characterization. Polym Int 59:1673–1682. https://doi.org/10.1002/pi.2902

    Article  CAS  Google Scholar 

  39. Nakatani H, Ichizyu T, Miura H, Terano M (2010) Novel modification of polybut-1-ene using auto-oxidation controlled by addition of limonene monomer. Polym Int 59:463–471. https://doi.org/10.1002/pi.2723

    Article  CAS  Google Scholar 

  40. Nakatani H, Ogura M, Yoshikawa T et al (2011) Preparation of polybutene-1/multiwall carbon nanotube composite by oxidation and limonene radical grafting and its characterization. Polym Int 60:1614–1623. https://doi.org/10.1002/pi.3133

    Article  CAS  Google Scholar 

Download references

Funding

This research was not funded by any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris S. Achilias.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriotis, E.G., Koumbis, A.E. & Achilias, D.S. Nitroxide-mediated polymerization of styrene and limonene in the framework of synthesis of potentially functional polymers using naturally occurring terpenes. Polym. Bull. 78, 4609–4628 (2021). https://doi.org/10.1007/s00289-020-03333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03333-x

Keywords

Navigation