Skip to main content
Log in

Poly(diallyldimethylammonium chloride)-grafted carboxylated-MWCNT as an additive in the polyethersulfone membrane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Surface modification of carbon nanotubes is a common method to improve their compatibility with polymer matrix in membranes. In this study, polyethersulfone (PES) nanocomposite membranes were prepared by incorporation of modified multi-walled carbon nanotubes (MWCNT). For this purpose, diallyldimethylammonium chloride was used as a monomer for the functionalization of carboxylated-MWCNT via in situ polymerization. Synthesized polymer possessed a positive charge on repeating unit, which increased the hydrophilicity of carboxylated-MWCNT. The properties and performances of the modified carboxylated-MWCNT and nanocomposite membranes were investigated by field emission scanning electron microscopy, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), contact angle measurement, salt, heavy metal, and dye removal, and fouling studies. The occurrence of the modification reaction was confirmed by FT-IR and TGA studies. Results showed that the incorporation of modified carboxylated-MWCNT into polyethersulfone membranes improved their performance in the separation of salts, heavy metal ions, and dyes. Furthermore, the surface hydrophilicity of membranes was improved by loading of modified carboxylated-MWCNT, and other properties like the pure water flux and anti-fouling resistance of PES membranes were refined remarkably. More importantly, the membranes containing modified additive showed pH sensitivity because of ammonium groups in the attached polymer chain.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mahmoudian M, Balkanloo PG (2017) Clay-hyperbranched epoxy/polyphenylsulfone nanocomposite membranes. Iran Polym J 26(9):711–720. https://doi.org/10.1007/s13726-017-0556-7

    Article  CAS  Google Scholar 

  2. Mahmoudian M, Balkanloo PG, Nozad E (2018) A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chin J Polym Sci 36(1):49–57. https://doi.org/10.1007/s10118-018-2004-3

    Article  CAS  Google Scholar 

  3. Mahmoudian M, Kochameshki MG, Mahdavi H, Vahabi H, Enayati M (2018) Investigation of structure-performance properties of a special type of polysulfone blended membranes. Polym Adv Technol 29(10):2690–2700. https://doi.org/10.1002/pat.4395

    Article  CAS  Google Scholar 

  4. Shi Q, Su Y, Zhu S, Li C, Zhao Y, Jiang Z (2007) A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. J Membr Sci 303(1):204–212. https://doi.org/10.1016/j.memsci.2007.07.009

    Article  CAS  Google Scholar 

  5. Padaki M, Emadzadeh D, Masturra T, Ismail AF (2015) Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 362:141–150. https://doi.org/10.1016/j.desal.2015.01.012

    Article  CAS  Google Scholar 

  6. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  7. Bhattacharya M (2016) Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials 9(4):262. https://doi.org/10.3390/ma9040262

    Article  CAS  PubMed Central  Google Scholar 

  8. Chatterjee S, Nüesch FA, Chu BTT (2011) Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology 22(27):275714. https://doi.org/10.1088/0957-4484/22/27/275714

    Article  CAS  PubMed  Google Scholar 

  9. El Achaby M, Qaiss A (2013) Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater Des 44:81–89. https://doi.org/10.1016/j.matdes.2012.07.065

    Article  CAS  Google Scholar 

  10. Sakintuna B, Yürüm Y (2005) Templated porous carbons: a review article. Ind Eng Chem Res 44(9):2893–2902. https://doi.org/10.1021/ie049080w

    Article  CAS  Google Scholar 

  11. Zhao J, Lu JP, Han J, Yang C-K (2003) Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl Phys Lett 82(21):3746–3748. https://doi.org/10.1063/1.1577381

    Article  CAS  Google Scholar 

  12. Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T (2010) Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. J Membr Sci 364(1):309–317. https://doi.org/10.1016/j.memsci.2010.08.023

    Article  CAS  Google Scholar 

  13. Nashrom FIR, Saheed MSM, Fai Kait C (2019) Development of janus polymer/carbon nanotubes hybrid membrane for oil-water separation. Mater Today Proc 7:655–660. https://doi.org/10.1016/j.matpr.2018.12.057

    Article  CAS  Google Scholar 

  14. Davood Abadi Farahani MH, Vatanpour V (2019) Chapter 4—polymer/carbon nanotubes mixed matrix membranes for water purification. In: Thomas S, Pasquini D, Leu S-Y, Gopakumar DA (eds) Nanoscale materials in water purification. Elsevier, Amsterdam, pp 87–110. https://doi.org/10.1016/B978-0-12-813926-4.00009-4

    Chapter  Google Scholar 

  15. Liu Y, Su Y, Cao J, Guan J, Zhang R, He M, Fan L, Zhang Q, Jiang Z (2017) Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. J Membr Sci 542:254–263. https://doi.org/10.1016/j.memsci.2017.08.018

    Article  CAS  Google Scholar 

  16. Otitoju TA, Ahmad AL, Ooi BS (2018) Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv 8(40):22710–22728. https://doi.org/10.1039/C8RA03296C

    Article  CAS  Google Scholar 

  17. Vatanpour V, Haghighat N (2019) Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater. J Environ Manage 242:90–97. https://doi.org/10.1016/j.jenvman.2019.04.060

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Tang T, Zhang X, Li S, Li M (2007) Dissolution, characterization and photofunctionalization of carbon nanotubes. Mater Lett 61(22):4351–4353. https://doi.org/10.1016/j.matlet.2007.01.103

    Article  CAS  Google Scholar 

  19. Choi J-H, Jegal J, Kim W-N (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284(1):406–415. https://doi.org/10.1016/j.memsci.2006.08.013

    Article  CAS  Google Scholar 

  20. Qiu S, Wu L, Pan X, Zhang L, Chen H, Gao C (2009) Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J Membr Sci 342(1):165–172. https://doi.org/10.1016/j.memsci.2009.06.041

    Article  CAS  Google Scholar 

  21. Yuan X-S, Guo Z-Y, Geng H-Z, Rhen DS, Wang L, Yuan X-T, Li J (2019) Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application. J Membr Sci 575:160–169. https://doi.org/10.1016/j.memsci.2019.01.010

    Article  CAS  Google Scholar 

  22. Daraei P, Madaeni SS, Ghaemi N, Ahmadi Monfared H, Khadivi MA (2013) Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: comparison of MWCNT and PAA modified MWCNT. Sep Purif Technol 104:32–44. https://doi.org/10.1016/j.seppur.2012.11.004

    Article  CAS  Google Scholar 

  23. Keller M, Panglisch S, Gimbel R (2017) Measuring hydraulic layer resistance and correlated effects in colloidal fouling of salt-retaining membranes. Water Sci Technol Water Supply 17(4):985–997

    Article  CAS  Google Scholar 

  24. Vp S, Ep S, Ab N, Thomas S, Stephen R (2016) Properties of polysulfone/halloysite nanocomposite membranes: prepared by phase inversion method. Macromol Symp 361(1):11–19. https://doi.org/10.1002/masy.201500003

    Article  CAS  Google Scholar 

  25. Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16(2):024802. https://doi.org/10.1088/1468-6996/16/2/024802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fraczek-Szczypta A, Menaszek E, Syeda TB, Misra A, Alavijeh M, Adu J, Blazewicz S (2012) Effect of MWCNT surface and chemical modification on in vitro cellular response. J Nanoparticle Res 14(10):1181–1181. https://doi.org/10.1007/s11051-012-1181-1

    Article  CAS  Google Scholar 

  27. Larkin P (2011) General outline and strategies for IR and Raman spectral interpretation. In. pp 117–133. https://doi.org/10.1016/B978-0-12-386984-5.10007-2

  28. Szanyi J, Kwak JH (2014) Dissecting the steps of CO2 reduction: 1. The interaction of CO and CO2 with γ-Al2O3: an in situ FTIR study. Phys Chem Chem Phys 16(29):15117–15125. https://doi.org/10.1039/C4CP00616J

    Article  CAS  PubMed  Google Scholar 

  29. Damian C, Pandele A, Iovu H (2010) Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. UPB Sci Bull 72:163–174

    CAS  Google Scholar 

  30. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1):284–294. https://doi.org/10.1016/j.memsci.2011.03.055

    Article  CAS  Google Scholar 

  31. Majeed S, Fierro D, Buhr K, Wind J, Du B, Boschetti-de-Fierro A, Abetz V (2012) Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J Membr Sci 403–404:101–109. https://doi.org/10.1016/j.memsci.2012.02.029

    Article  CAS  Google Scholar 

  32. Vatanpour V, Esmaeili M, Farahani MHDA (2014) Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J Membr Sci 466:70–81. https://doi.org/10.1016/j.memsci.2014.04.031

    Article  CAS  Google Scholar 

  33. Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284(1):17–53. https://doi.org/10.1016/j.memsci.2006.08.019

    Article  CAS  Google Scholar 

  34. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    Article  CAS  Google Scholar 

  35. Sun M, Su Y, Mu C, Jiang Z (2010) Improved antifouling property of PES ultrafiltration membranes using additive of silica−PVP nanocomposite. Ind Eng Chem Res 49(2):790–796. https://doi.org/10.1021/ie900560e

    Article  CAS  Google Scholar 

  36. Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56. https://doi.org/10.1016/j.seppur.2012.01.002

    Article  CAS  Google Scholar 

  37. Dalwani M, Benes NE, Bargeman G, Stamatialis D, Wessling M (2011) Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes. J Membr Sci 372(1):228–238. https://doi.org/10.1016/j.memsci.2011.02.012

    Article  CAS  Google Scholar 

  38. Miao J, Zhang L-C, Lin H (2013) A novel kind of thin film composite nanofiltration membrane with sulfated chitosan as the active layer material. Chem Eng Sci 87:152–159. https://doi.org/10.1016/j.ces.2012.10.015

    Article  CAS  Google Scholar 

  39. Yu S, Liu M, Ma M, Qi M, Lü Z, Gao C (2010) Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J Membr Sci 350(1):83–91. https://doi.org/10.1016/j.memsci.2009.12.014

    Article  CAS  Google Scholar 

  40. Zarrabi H, Yekavalangi ME, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 394:83–90. https://doi.org/10.1016/j.desal.2016.05.002

    Article  CAS  Google Scholar 

  41. Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98. https://doi.org/10.1016/j.memsci.2013.02.042

    Article  CAS  Google Scholar 

  42. Selakjani PP, Peyravi M, Jahanshahi M, Hoseinpour H, Rad AS, Khalili S (2018) Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers. Front Chem Sci Eng 12(1):174–183. https://doi.org/10.1007/s11705-017-1670-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thanks to the Nanotechnology Research Center of Urmia University, Urmia, who fully sponsored this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mahmoudian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, M., Khazani, Y., Gozali Balkanloo, P. et al. Poly(diallyldimethylammonium chloride)-grafted carboxylated-MWCNT as an additive in the polyethersulfone membrane. Polym. Bull. 78, 4313–4332 (2021). https://doi.org/10.1007/s00289-020-03316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03316-y

Keywords

Navigation