Skip to main content
Log in

Preparation of semi-interpenetrating silk fibroin–polyacrylamide nanogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) is a promising material for biomedical applications especially in the form of nanogels that combine the advantages of nanotechnology and cross-linking gel-like systems with various superior properties in biological environment. The present study describes the preparation of a semi-interpenetrating (semi-IPN) network using SF and polyacrylamide (PAAm) in the presence of N,N′-methylenebis(acrylamide) (BAAm) as a chemical crosslinker. While the particles were obtained by an inverse microemulsion method, photo-polymerization reactions were performed with Irgacure as an initiator. UV irradiation time and SF concentrations were adjusted to get stable Semi-IPN nanogels with a size smaller than 200 nm. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses were used for sample characterizations. FT-IR measurements proved both the existence of SF and PAAM in the nanogel structure and also β-sheet formation of SF with methanol treatment. A characteristic peak at 20.0 A° corresponding to the β-sheet crystalline structure of SF was obtained by XRD analysis. In addition to the dialysis purification, smaller particles can be obtained with a size around 100 nm by increasing SF concentration. DLS results were supported by TEM images of nanogels with a spherical shape. The results indicated that optimized conditions are suitable for the development of SF nanogels with potential applications in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141. https://doi.org/10.1016/s0142-9612(02)00156-4

    Article  CAS  PubMed  Google Scholar 

  2. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757. https://doi.org/10.1016/S0079-6700(01)00051-X

    Article  CAS  Google Scholar 

  3. Asakura T, Kuzuhara A, Tabeta R, Saito H (1985) Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 18:1841–1845. https://doi.org/10.1021/ma00152a009

    Article  CAS  Google Scholar 

  4. Cappello J et al (1998) In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Controlled Release 53:105–117. https://doi.org/10.1016/s0168-3659(97)00243-5

    Article  CAS  Google Scholar 

  5. Candau F (1997) Inverse emulsion and microemulsion polymerization. In: Lovell PE-AM (ed) Emulsion polymerization and emulsion polymers. Wiley, West Sussex, p 723

    Google Scholar 

  6. Freddi G, Tsukada M, Beretta S (1999) Structure and physical properties of silk fibroin/polyacrylamide blend films. J Appl Polym Sci 71:1563–1571. https://doi.org/10.1002/(sici)1097-4628(19990307)71:10<1563:Aid-app4>3.0.Co;2-e

    Article  CAS  Google Scholar 

  7. Kaplan D, Adams WW, Farmer B, Viney C (eds) (1993) Silk: biology, structure, properties, and genetics. In: Silk polymers. ACS symposium series, vol 544. American Chemical Society, pp 2–16. https://doi.org/10.1021/bk-1994-0544.ch001

  8. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromol 5:786–792. https://doi.org/10.1021/bm0345460

    Article  CAS  Google Scholar 

  9. Leisk GG, Lo TJ, Yucel T, Lu Q, Kaplan DL (2010) Electrogelation for protein adhesives. Adv Mater (Deerfield Beach, Fla) 22:711–715. https://doi.org/10.1002/adma.200902643

    Article  CAS  Google Scholar 

  10. Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 54:1075–1091. https://doi.org/10.1016/s0169-409x(02)00063-7

    Article  CAS  PubMed  Google Scholar 

  11. Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16. https://doi.org/10.1016/j.actbio.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  12. Mo C, Holland C, Porter D, Shao Z, Vollrath F (2009) Concentration state dependence of the rheological and structural properties of reconstituted silk. Biomacromol 10:2724–2728. https://doi.org/10.1021/bm900452u

    Article  CAS  Google Scholar 

  13. Myung SJ, Kim H-S, Kim Y, Chen P, Jin H-JJMR (2008) Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromol Res 16:604–608. https://doi.org/10.1007/bf03218567

    Article  CAS  Google Scholar 

  14. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem (Int Ed Engl) 44:7686–7708. https://doi.org/10.1002/anie.200501321

    Article  CAS  Google Scholar 

  15. Rnjak-Kovacina J, Wray LS, Burke KA, Torregrosa T, Golinski JM, Huang W, Kaplan DL (2015) Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng 1:260–270. https://doi.org/10.1021/ab500149p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seib FP (2018) Reverse-engineered silk hydrogels for cell and drug delivery. Ther Deliv 9:469–487. https://doi.org/10.4155/tde-2018-0016

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka K et al (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochem Biophys Acta 1432:92–103. https://doi.org/10.1016/s0167-4838(99)00088-6

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31:1025–1035. https://doi.org/10.1016/j.biomaterials.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Xiao W et al (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7:2384–2393. https://doi.org/10.1016/j.actbio.2011.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044–2050. https://doi.org/10.1016/j.bpj.2009.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900. https://doi.org/10.1007/s11051-006-9162-x

    Article  CAS  Google Scholar 

  22. Zhao Z, Li Y, Xie M-B (2015) Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci 16:4880–4903. https://doi.org/10.3390/ijms16034880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Research Projects Committee of Bezmialem Vakif University (BAP, 9.2017/24), Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Ceylan Tuncaboylu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncel, M., Ceylan Tuncaboylu, D. Preparation of semi-interpenetrating silk fibroin–polyacrylamide nanogels. Polym. Bull. 78, 3043–3054 (2021). https://doi.org/10.1007/s00289-020-03245-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03245-w

Keywords

Navigation