Skip to main content

Advertisement

Log in

Evaluation of mechanical and thermal properties and creep behavior of micro- and nano-CaCO3 particle-filled HDPE nano- and microcomposites produced in large scale

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The influence of the interfacial area and the particle size of CaCO3 filler particles on the mechanical and thermal properties of high-density polyethylene (HDPE) was studied in this work. The HDPE-based nano- and microcomposites were manufactured by using an industrial compounder system. The tensile, impact, creep, flexural and hardness properties of the filled and unfilled HDPE samples were investigated. The experiment revealed that the addition of both micro- and nanoparticles increased the tensile and flexural modulus of unfilled HDPE. However, it was observed that the addition of these particles did not have a significant effect on the tensile and flexural strength of unfilled HDPE. On the other hand, the presence of these particles decreased the elongation of break of unfilled HDPE. The impact strength of filled HDPE composites decreased slightly with both micro- and nanoparticle contents. The nanoparticle at high stress level (16 MPa) is more effective on the creep behavior of unfilled HDPE than on microparticles. However, microparticles were found to be more effective at low stress levels (8 and 12 MPa). It was found that the particle size has a profound effect on the thermal and physical properties of unfilled HDPE, such as density, melt flow index and vicat softening temperature. The results showed that the size of filler particles has a significant effect on the mechanical and thermal properties of the unfilled HDPE. Therefore, the size selection of constituent materials of nano- and microcomposites is an important consideration because it directly affects the functional performance of particle-filled HDPE nano- and microcomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cho K, Saheb D, Choi J, Yang H (2002) Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 43(4):1407–1416

    Article  CAS  Google Scholar 

  2. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961

    Article  Google Scholar 

  3. Bartczak Z, Argon A, Cohen R, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365

    Article  CAS  Google Scholar 

  4. Sahebian S (2007) Effect of nano-sized calcium carbonate on creep behavior of medium density polyethylene. MSc Thesis, Ferdowsi University of Mashad, Department of Metallurgy and Materials Engineering, Iran

  5. Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Process Technol 209(3):1310–1317

    Article  CAS  Google Scholar 

  6. Lorusso C, Vergaro V, Conciauro F, Ciccarella G, Congedo PM (2017) Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles. Nanomater Nanotechnol 7:1847980416684117

    Article  CAS  Google Scholar 

  7. Chen J-K, Huang Z-P, Zhu J (2007) Size effect of particles on the damage dissipation in nanocomposites. Compos Sci Technol 67(14):2990–2996

    Article  CAS  Google Scholar 

  8. Evans AG, Faber KT (1981) Toughening of ceramics by circumferential microcracking. J Am Ceram Soc 64(7):394–398

    Article  Google Scholar 

  9. Lauke B (2008) On the effect of particle size on fracture toughness of polymer composites. Compos Sci Technol 68(15–16):3365–3372

    Article  CAS  Google Scholar 

  10. Lauke B, Fu S-Y (2013) Aspects of fracture toughness modelling of particle filled polymer composites. Compos B Eng 45(1):1569–1574

    Article  CAS  Google Scholar 

  11. Chen H, Chen T, Hsu C (2006) Effects of wood particle size and mixing ratios of HDPE on the properties of the composites. Holz als Roh-und Werkstoff 64(3):172–177

    Article  CAS  Google Scholar 

  12. Thio Y, Argon A, Cohen R, Weinberg M (2002) Toughening of isotactic polypropylene with CaCO3 particles. Polymer 43(13):3661–3674

    Article  CAS  Google Scholar 

  13. Dusunceli N, Colak OU (2006) High density polyethylene (HDPE): experiments and modeling. Mech Time-Depend Mater 10(4):331–345

    Article  CAS  Google Scholar 

  14. Sepet H, Tarakcioglu N, Misra R (2016) Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale. J Compos Mater 50(24):3445–3456

    Article  CAS  Google Scholar 

  15. Atikler U, Basalp D, Tihminlioğlu F (2006) Mechanical and morphological properties of recycled high-density polyethylene, filled with calcium carbonate and fly ash. J Appl Polym Sci 102(5):4460–4467

    Article  CAS  Google Scholar 

  16. Deshmane C, Yuan Q, Misra R (2007) On the fracture characteristics of impact tested high density polyethylene–calcium carbonate nanocomposites. Mater Sci Eng, A 452:592–601

    Article  Google Scholar 

  17. Sahebian S, Zebarjad SM, Sajjadi SA, Sherafat Z, Lazzeri A (2007) Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites. J Appl Polym Sci 104(6):3688–3694

    Article  CAS  Google Scholar 

  18. Yang YL, Bai SL, G’Sell C, Hiver JM (2006) Mechanical properties and volume dilatation of HDPE/CaCO3 blends with and without impact modifier. Polym Eng Sci 46(11):1512–1522

    Article  CAS  Google Scholar 

  19. Ali I, Elleithy R (2011) Toughness of HDPE/CaCO3 microcomposites prepared from masterbatch by melt blend method. J Appl Polym Sci 122(5):3303–3315

    Article  CAS  Google Scholar 

  20. Sepet H, Tarakcioglu N, Misra R (2016) Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. J Compos Mater 50(22):3105–3116

    Article  CAS  Google Scholar 

  21. Lau K-T, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos B Eng 37(6):425–436

    Article  Google Scholar 

  22. Mishra S, Sonawane S, Singh R (2005) Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J Polym Sci, Part B: Polym Phys 43(1):107–113

    Article  CAS  Google Scholar 

  23. Sumita M, Shizuma T, Miyasaka K, Ishikawa K (1983) Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci Part B Phys 22(4):601–618

    Article  Google Scholar 

  24. Dai Lam T, Hoang TV, Quang DT, Kim JS (2009) Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater Sci Eng, A 501(1–2):87–93

    Article  Google Scholar 

  25. Hsueh CH (1989) Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J Am Ceram Soc 72(2):344–347

    Article  CAS  Google Scholar 

  26. Sepet H, Tarakcioglu N, Misra R (2017) Effect of inorganic nanofillers on the impact behavior and fracture probability of industrial high-density polyethylene nanocomposite. J Compos Mater 52:2431–2442

    Article  Google Scholar 

  27. Fu Q, Wang G, Shen J (1993) Polyethylene toughened by CaCO3 particle: brittle-ductile transition of CaCO3-toughened HDPE. J Appl Polym Sci 49(4):673–677

    Article  CAS  Google Scholar 

  28. Fu Q, Wang G (1992) Polyethylene toughened by rigid inorganic particles. Polym Eng Sci 32(2):94–97

    Article  CAS  Google Scholar 

  29. Aydemir B (2012) The investigation of mechanical behavior of CaCO3 in polyethylenes. KGK, Kaut Gummi Kunstst 65(9):35–38

    CAS  Google Scholar 

  30. Qiu W, Mai K, Zeng H (2000) Effect of silane-grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. J Appl Polym Sci 77(13):2974–2977

    Article  CAS  Google Scholar 

  31. Wah CA, Choong LY, Neon GS (2000) Effects of titanate coupling agent on rheological behaviour, dispersion characteristics and mechanical properties of talc filled polypropylene. Eur Polym J 36(4):789–801

    Article  CAS  Google Scholar 

  32. Mareri P, Bastide S, Binda N, Crespy A (1998) Mechanical behaviour of polypropylene composites containing fine mineral filler: effect of filler surface treatment. Compos Sci Technol 58(5):747–752

    Article  CAS  Google Scholar 

  33. Liu Z, Kwok K, Li R, Choy C (2002) Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer 43(8):2501–2506

    Article  CAS  Google Scholar 

  34. Zuiderduin W, Westzaan C, Huetink J, Gaymans R (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Sepet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepet, H., Aydemir, B. & Tarakcioglu, N. Evaluation of mechanical and thermal properties and creep behavior of micro- and nano-CaCO3 particle-filled HDPE nano- and microcomposites produced in large scale. Polym. Bull. 77, 3677–3695 (2020). https://doi.org/10.1007/s00289-019-02922-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02922-9

Keywords

Navigation