Skip to main content
Log in

Polyurethane/aromatic polyamide sulfone copolymer dispersions from transesterified castor oil

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Four polyurethane/polyamide copolymer dispersions (PUCON-co-APAS) were prepared from castor oil-based polyol (CON). Castor oil (CO) was firstly transesterified with triethanolamine at 210 °C for different time intervals: 30, 60, 90 and 120 min, to produce CON30, CON60, CON90 and CON120 polyols, respectively. The hydroxyl and acid values, density, viscosity, chemical structure analysis of the CON polyols were determined. The polyols were used to prepare PUCON30-co-APAS, PUCON60-co-APAS, PUCON90-co-APAS, and PUCON120-co-APAS copolymer dispersions in five steps using prepolymer self-emulsification solvent process. The first step is the prepolymer preparation step, in which CON was reacted with dimethylolpropionic acid and excess toluene diisocyanate to produce PUCON NCO . The second step is the copolymerization step, in which PUCON NCO was reacted with amino-terminated aromatic polyamide sulfone. The following processes are neutralization, chain extension and dispersion steps. The prepared copolymer dispersions were characterized using FTIR, DLS, TGA, DSC and GPC. Additionally, the physical, chemical and mechanical properties of the prepared copolymers were studied. The results showed an increase in the hydroxyl number of CON with increasing transesterification time. Stronger H-bonds and smaller particle sizes are produced using CON with higher transesterification time in the preparation of the copolymer dispersions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang HH, Gen CT (2002) Synthesis of anionic water-borne polyurethane with the covalent bond of a reactive dye. J Appl Polym Sci 84:797–805

    Article  CAS  Google Scholar 

  2. Devi DA, Raju KVSN, Aminabhavi TM (2007) Synthesis and characterization of moisture-cured polyurethane membranes and their applications in pervaporation separation of ethyl acetate/water azeotrope at 30 °C. J Appl Polym Sci 103:3405–3414

    Article  CAS  Google Scholar 

  3. Witkiewicz W, Zieliński A (2006) Properties of the polyurethane (PU) light foams. Adv Mater Sci 6(2):35–51

    Google Scholar 

  4. Pan X, Webster DC (2012) New biobased high functionality polyols and their use in polyurethane coatings. ChemSusChem 5:419–429

    Article  CAS  Google Scholar 

  5. Fu L, Yang L, Dai C, Zhao C, Ma L (2010) Thermal and mechanical properties of acrylated expoxidized-soybean oil-based thermosets. J Appl Polym Sci 117(4):2220–2225

    Article  CAS  Google Scholar 

  6. Kim EH, Woo-Rom Lee WR, Myoung SW, Kim JP, Jung YG, Nam YS, Kyoung WS, Cho H (2010) Characterization of waterborne polyurethane for ecofriendly functional floor plate. Prog Org Coat 67(2):102–106

    Article  CAS  Google Scholar 

  7. Jeon HT, Jang MK, Kim BK, Kim KH (2007) Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Coll Surf A Physicochem Eng Asp 302(1–3):559–567

    Article  CAS  Google Scholar 

  8. Hercule KM, Yan Z, Christophe MM (2011) Preparation and characterization of waterborne polyurethane crosslinked by urea bridges. Int J Chem 3(2):88–96

    Article  CAS  Google Scholar 

  9. Orgiles-Calpena E, Aran-Ais F, Torro-Palau AM, Orgiles-Barcelo C (2012) Influence of the chain extender nature on adhesives properties of polyurethane dispersions. J Dispers Sci Technol 33:147–154

    Article  CAS  Google Scholar 

  10. Mohamed HA, Badran BM, Rabie AM, Morsi SMM (2014) Synthesis and characterization of aqueous (polyurethane/aromatic polyamide sulfone) copolymer dispersions from castor oil. Prog Org Coat 77:965–974

    Article  CAS  Google Scholar 

  11. Gao C, Xu X, Ni J, Lin W, Zheng Q (2009) Effects of castor oil, glycol semi-ester, and polymer concentration on the properties of waterborne polyurethane dispersions. Polym Eng Sci 49(1):162–167

    Article  CAS  Google Scholar 

  12. Mequanint K, Sanderson R (2003) Nano-structure phosphorus-containing polyurethane dispersions: synthesis and crosslinking with melamine formaldehyde resin. Polymer 42(9):2631–2639

    Article  Google Scholar 

  13. Athawale VD, Nimbalkar VR (2011) Waterborne coatings based on renewable oil resources: an overview. J Am Oil Chem Soc 88(2):159–185

    Article  CAS  Google Scholar 

  14. Wu D, Qiu F, Xu H, Zhang J, Yang D (2011) Preparation, characterization, and properties of environmentally friendly waterborne poly(urethane acrylate)/silica hybrids. J Appl Polym Sci 119:1683–1695

    Article  CAS  Google Scholar 

  15. Chen F, Hehl J, Su Y, Mattheis C, Greiner A, Agarwal S (2013) Smart secondary polyurethane dispersions. Polym Int 62:1750–1757

    Article  CAS  Google Scholar 

  16. Ge Z, Luo Y (2013) Synthesis and characterization of siloxane-modified two-component waterborne polyurethane. Prog Org Coat 76:1522–1526

    Article  CAS  Google Scholar 

  17. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B Phys 51:197–207

    Article  CAS  Google Scholar 

  18. Xia Y, Larock RC (2011) Preparation and properties of aqueous castor oil-based polyurethane–silica nanocomposite dispersions through a sol–gel process. Macromol Rapid Commun 32:1331–1337

    Article  CAS  Google Scholar 

  19. Costa APO, Silva RB, Gerbase AE, Petzhold CL (2012) Synthesis and characterization of soybean-oil-based polyurethane composites containing industrial and agricultural residual wastes as fillers. J Appl Polym Sci 123:1370–1376

    Article  CAS  Google Scholar 

  20. John J, Bhattacharya M, Turner RB (2002) Characterization of polyurethane foams from soybean oil. J Appl Polym Sci 86:3097–3107

    Article  CAS  Google Scholar 

  21. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    Article  CAS  Google Scholar 

  22. Wang C, Chen X, Chen J, Liu C, Xie H, Cheng R (2011) Synthesis and characterization of novel polyurethane acrylates based on soy polyols. J Appl Polym Sci 122:2449–2455

    Article  CAS  Google Scholar 

  23. Lu Y, Larock RC (2011) Synthesis and properties of grafted latices from a soybean oil-based waterborne polyurethane and acrylics. J Appl Polym Sci 119:3305–3314

    Article  CAS  Google Scholar 

  24. Javni I, Petrovic ZS, Guo A, Fuller R (2000) Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci 77(8):1723–1734

    Article  CAS  Google Scholar 

  25. Saxena PK, Srinivasan SR, Hrouz J, Ilavsky M (1992) The effect of castor oil on the structure and properties of polyurethane elastomers. J Appl Polym Sci 44(8):1343–1347

    Article  CAS  Google Scholar 

  26. Liu TM, Bui VT (1995) Instrumented impact testing of castor-oil-based polyurethanes. J Appl Polym Sci 56(3):345–354

    Article  CAS  Google Scholar 

  27. Mileo PC, Mulinari DR, Baptista CARP, Rocha GJM, Gonçalves AR (2011) Mechanical behaviour of polyurethane from castor oil reinforced sugarcane straw cellulose composites. Proced Eng 10:2068–2073

    Article  CAS  Google Scholar 

  28. Suthar B, Dave M, Jadav K (1993) Sequential-interpenetrating polymer networks from castor oil-based polyesters. J Appl Polym Sci 50(12):2143–2147

    Article  CAS  Google Scholar 

  29. Rodrigues JME, Pereira MR, De Souza AG, Carvalho ML, Neto AAD, Dantas TNC, Fonseca JLC (2005) DSC monitoring of the cure kinetics of a castor oil-based polyurethane. Thermochim Acta 427(1–2):31–36

    Article  CAS  Google Scholar 

  30. Valero MF, Pulido JE, Ramırez A, Cheng Z (2008) Polyurethanes sintetized of polyols obtained from castor oil modified by transesterification with pentaerythritol. Quim Nova 31(8):2076–2082

    Article  CAS  Google Scholar 

  31. Kaushik A, Singh P (2005) Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy. Int J Polym Anal Char 10(5–6):373

    Article  CAS  Google Scholar 

  32. Kaushik A, Singh P (2012) Castor oil/trimethylol propane-based polyurethane reactions: modeling in a batch reactor. J Appl Polym Sci 125:E51–E60

    Article  CAS  Google Scholar 

  33. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118

    Article  CAS  Google Scholar 

  34. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  35. Bellomo MR, Di Pasquale G, La Rosa A, Pollicino A, Siracusa G (1996) New aromatic polyamide materials containing sulfone, ether and ketone linkages. Polymer 37(13):2877–2881

    Article  CAS  Google Scholar 

  36. Imai Y (1996) Recent advances in synthesis of high-temperature aromatic polymers. React Funct Polym 30:3–15

    Article  CAS  Google Scholar 

  37. Liu YJ, Pei XL, Sheng SR, Yang F, Liu XL, Song CS (2012) Synthesis and characterization of novel aromatic poly(ester amide)s containing pendant trifluoromethylphenoxy groups. J Appl Polym Sci 125:3904–3912

    Article  CAS  Google Scholar 

  38. Zhang G, Li D, Huang G, Wang X, Long S, Yang J (2011) Synthesis and properties of polyamides containing high contents of thioether units. React Funct Polym 71:775–781

    Article  CAS  Google Scholar 

  39. Pal RR, Patil PS, Salunkhe MM, Maldar NN, Wadgaonkar PP (2009) Synthesis, characterization and constitutional isomerism study of new aromatic polyamides containing pendant groups based on asymmetrically substituted meta-phenylene diamines. Eur Polymer J 45:953–959

    Article  CAS  Google Scholar 

  40. Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J Compos Mater 43(25):3057–3072

    Article  CAS  Google Scholar 

  41. Dave VJ, Patel HS (2013) Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. J Saudi Chem Soc. doi:10.1016/j.jscs.2013.08.001

  42. Veronese VB, Menger RK, de C, Forte MM, Petzhold CL (2011) Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 120:530–537

    Article  CAS  Google Scholar 

  43. Ristic IV, Budinski-Simendic J, Krakovsky I, Valentova H, Radicevic R, Cakic S, Nikolic N (2012) The properties of polyurethane hybrid materials based on castor oil. Mater Chem Phys 132(1):74–81

    Article  CAS  Google Scholar 

  44. Guclu G (2010) Alkyd resins based on waste PET for water-reducible coating applications. Polym Bull 64:739–748

    Article  CAS  Google Scholar 

  45. Garcia-Pacios V, Costa V, Colera M, Martin-Martınez JM (2010) Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. Int J Adhes Adhes 30:456–465

    Article  CAS  Google Scholar 

  46. Garcia-Pacios V, Iwata Y, Colera M, Martin-Martınez JM (2011) Influence of the solids content on the properties of waterborne polyurethane dispersions obtained with polycarbonate of hexanediol. Int J Adhes Adhes 31:787–794

    Article  CAS  Google Scholar 

  47. Perez-Liminana MA, Aran-Ais F, Torro-Palau AM, Orgiles-Barcel C, Martin-Martinez JM (2007) Influence of the hard-to-soft segment ratio on the adhesion of water-borne polyurethane adhesive. J Adhes Sci Technol 21(8):755–773

    Article  CAS  Google Scholar 

  48. Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 87:2068–2075

    Article  CAS  Google Scholar 

  49. Cakic SM, Spirkova M, Ristic IS, B-Simendic JK, M-Cincovic M, Poreba R (2013) The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content. Mater Chem Phys 138:277–285

    Article  CAS  Google Scholar 

  50. Mishra AK, Narayan R, Aminabhavi TM, Pradhan SK, Raju KVSN (2012) Hyperbranched polyurethane-urea-imide/o-clay-silica hybrids: synthesis and characterization. J Appl Polym Sci 125:E67–E75

    Article  CAS  Google Scholar 

  51. Sebenik U, Krajnc M (2004) Seeded semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate using polyurethane dispersion: effect of soft segment length on kinetics. Coll Surf A Physicochem Eng Asp 233:51–62

    Article  CAS  Google Scholar 

  52. Choi HS, Noh ST, Choi KB (1999) Effects of anionic center on properties of polyurethane anionomer dispersion. J Ind Eng Chem 5(1):52–58

    CAS  Google Scholar 

  53. Garcia-Pacios V, Colera M, Iwata Y, Martin-Martınez JM (2013) Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless steel. Prog Org Coat 76:1726–1729

    Article  CAS  Google Scholar 

  54. David G, Simionescu BC, Ibanescu S, Vearba F (2011) Effect of montmorillonite content in nanocomposites of segmented polyurethanes with poly(2-alkyl-2-oxazoline) sequences. High Perform Polym 23(1):74–84

    CAS  Google Scholar 

  55. Chen Y, Chen YL (1992) Aqueous dispersions of polyurethane anionomers: effects of countercation. J Appl Polym Sci 46:435–443

    Article  CAS  Google Scholar 

  56. Kumar MNS, Siddaramaiah (2007) Thermogravimetric analysis and morphological behavior of castor oil based polyurethane-polyester nonwoven fabric composites. J Appl Polym Sci 106:3521–3528

    Article  CAS  Google Scholar 

  57. Patel MR, Shukla JM, Patel NK, Patel KH (2009) Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding. Mater Res 12(4):385–393

    Article  CAS  Google Scholar 

  58. Hourston DJ, Williams GD, Satguru R, Padget JC, Pears D (1999) The influence of the degree of neutralization, the ionic moiety, and the counterion on water-dispersible polyurethanes. J Appl Polym Sci 74:556–566

    Article  CAS  Google Scholar 

  59. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2005) Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. J Appl Polym Sci 98:2514–2520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.A., Morsi, S.M.M., Badran, B.M. et al. Polyurethane/aromatic polyamide sulfone copolymer dispersions from transesterified castor oil. Polym. Bull. 74, 531–554 (2017). https://doi.org/10.1007/s00289-016-1728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1728-x

Keywords

Navigation