Skip to main content

Advertisement

Log in

Synthesis of PLGA using a C 3-symmetric Zr (IV) amine tris(phenolate) alkoxide initiator and the effects of gamma radiation on its properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, we report the preparation and characterisation of poly(lactic-co-glycolic) acid (PLGA) using a C 3-symmetric Zr (IV) amine tris(phenolate) alkoxide initiator. Although the zirconium alkoxide initiator is slower than the most commonly used Sn(Oct)2, relatively high molecular weights were obtained at a temperature of 130 °C, for a monomer to initiator ratio of 1000/1 (24 h) and 5000/1 (48 h). The degree of racemisation also depends on the initiator used. The reactions performed with the zirconium initiator showed a higher degree of racemisation when compared to those performed with Sn(Oct)2. A slight increase in the racemisation with time was also observed. The effects of gamma radiation on PLGA were also studied. Doses commonly applied to sterilise materials for biomedical applications were employed—10, 18, 25 and 50 kGy. The molecular weight of all samples irradiated decreased in a dose-dependent fashion—up to 56 % loss for 10 kGy and 72 % for 50 kGy—but were less pronounced for higher doses. Changes in thermal properties, such as melting point, glass transition temperature and enthalpy of crystallisation and fusion, were also observed after irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (2014) World cancer factsheet. http://publications.cancerresearchuk.org/downloads/product/cs_report_world.pdf. Accessed 27 May 2015

  2. Instituto National de Cancer (2014) Estimativa 2014—Incidência de câncer no Brasil. ISBN 978-85-7318-194-4

  3. Jani AB, Feinstein JM, Pasciak R et al (2006) Role of external beam radiotherapy with low-dose-rate brachytherapy in treatment of prostate cancer. Urology 67:1007–1011. doi:10.1016/j.urology.2005.11.008

    Article  Google Scholar 

  4. Franca CADS, Vieira SL, Bernabe AJS, Penna ABR (2007) The seven-year preliminary results of Brachytherapy with Iodine-125 seeds for localized prostate cancer treated at a Brazilian single-center. Int Braz J Urol 33:752–763. doi:10.1590/S1677-55382007000600003

    Article  Google Scholar 

  5. Rostelato M, Rela P, Zeituni C et al (2008) Development and production of radioactive sources used for cancer treatment in Brazil. Nukleonika 53:S99–S103

    CAS  Google Scholar 

  6. Blasko JC, Grimm PD, Ragde H (1993) Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:240–249. doi:10.1016/S1053-4296(05)80121-3

    Article  CAS  Google Scholar 

  7. Varregoso J (2006) Braquiterapia Prostática. Acta Urol 23:21–30

    Google Scholar 

  8. Davis BJ, Pfeifer EA, Wilson TM et al (2000) Prostate brachytherapy seed migration to the right ventricle found at autopsy following acute cardiac dysrhythmia. J Urol 164:1661. doi:10.1016/S0022-5347(05)67061-9

    Article  CAS  Google Scholar 

  9. Davis BJ, Bresnahan JF, Stafford SL et al (2002) Prostate brachytherapy seed migration to a coronary artery found during angiography. J Urol 168:1103. doi:10.1016/S0022-5347(05)64589-2

    Article  Google Scholar 

  10. Goulet CC, Davis BJ, Hillman DW et al (2006) Comparison of seed migration to the chest after permanent prostate brachytherapy with loose, stranded or mixed seeds. Int J Radiat Oncol 66:S391. doi:10.1016/j.ijrobp.2006.07.732

    Article  Google Scholar 

  11. Tapen EM, Blasko JC, Grimm PD et al (1998) Reduction of radioactive seed embolization to the lung following prostate brachytherapy. Int J Radiat Oncol 42:1063–1067. doi:10.1016/S0360-3016(98)00353-8

    Article  CAS  Google Scholar 

  12. Peleias FS Jr, Zeituni CA, Rostelato ECM et al (2012) Comparison between the use of loose and stranded seeds in prostate brachytherapy in brazil. Open J Urol 2:206–209. doi:10.4236/oju.2012.223036

    Article  Google Scholar 

  13. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102

    Article  CAS  Google Scholar 

  14. Menemşe Kiremitçi-Gümüşderelioğlu GD (1999) Synthesis, characterization and in vitro degradation of poly (dl-lactide)/poly (dl-lactide-co-glycolide) films. Turk J Chem 23:153–161

    Google Scholar 

  15. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346. doi:10.1016/S0142-9612(00)00101-0

    Article  CAS  Google Scholar 

  16. Zhou S, Deng X, Li X et al (2004) Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. J Appl Polym Sci 91:1848–1856. doi:10.1002/app.13385

    Article  CAS  Google Scholar 

  17. D’Avila Carvalho Erbetta C (2012) Synthesis and characterization of poly(d,l-Lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 03:208–225. doi:10.4236/jbnb.2012.32027

    Article  Google Scholar 

  18. Stridsberg KM, Ryner M, Albertsson A (2002) Controlled ring-opening polymerization : polymers with designed macromolecular architecture. Adv Polym Sci 157:41–67

    Article  CAS  Google Scholar 

  19. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659. doi:10.3390/ijms15033640

    Article  CAS  Google Scholar 

  20. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176. doi:10.1021/cr040002s

    Article  CAS  Google Scholar 

  21. Motta AC, Duek EAR (2006) Synthesis, characterization, and “in vitro” degradation of poly(l-lactic acid-co-glycolic acid), PLGA. Matéria (Rio de Janeiro) 11:340–350. doi:10.1590/S1517-70762006000300024

    Article  Google Scholar 

  22. Auras R, Lim L-T, Selke SEM, Tsuji H (2010) Poly(lactic acid)—synthesis, structures, properties, processing and application. First. Wiley, Hoboken

    Book  Google Scholar 

  23. Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed 12:21–34

    Article  CAS  Google Scholar 

  24. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  25. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490. doi:10.1016/S0142-9612(00)00115-0

    Article  CAS  Google Scholar 

  26. Schwach G, Coudane J, Engel R, Vert M (1997) More about the polymerization of lactides in the presence of stannous octoate. J Polym Sci, Part A: Polym Chem 35:3431–3440. doi:10.1002/(SICI)1099-0518(19971130)35:

    Article  CAS  Google Scholar 

  27. Zhang X, MacDonald DA, Goosen MFA, McAuley KB (1994) Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances. J Polym Sci, Part A: Polym Chem 32:2965–2970. doi:10.1002/pola.1994.080321519

    Article  CAS  Google Scholar 

  28. Dobrzynski P, Kasperczyk J, Janeczek H, Bero M (2001) Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerization of glycolide with l-lactide Initiated by Zr(Acac)4. Macromolecules 34:5090–5098

    Article  CAS  Google Scholar 

  29. Orchel A, Jelonek K, Kasperczyk J et al (2013) The influence of chain microstructure of biodegradable copolyesters obtained with low-toxic zirconium initiator to in vitro biocompatibility. Biomed Res Int 2013:176946. doi:10.1155/2013/176946

    Article  Google Scholar 

  30. Dobrzynski P (2002) Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from l-lactide, glycolide, and ε-caprolactone initiated by zirconium(IV) acetylacetonate. J Polym Sci, Part A: Polym Chem 40:3129–3143. doi:10.1002/pola.10401

    Article  CAS  Google Scholar 

  31. Tanzi MC, Verderio P, Lampugnani MG et al (1994) Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J Mater Sci Mater Med 5:393–396. doi:10.1007/BF00058971

    Article  CAS  Google Scholar 

  32. Irving SN (1957) Dangerous properties of industrial materials, 8th edn. Reinhold, New York

    Google Scholar 

  33. Salánki Y, D’eri Y, Platokhin A, Rózsa KS (2000) The neurotoxicity of environmental pollutants: the effects of tin (Sn2 +) on acetylcholine-induced currents in greater pond snail neurons. Neurosci Behav Physiol 30:63–73. doi:10.1007/BF02461393

    Article  Google Scholar 

  34. de Mattos JCP, Dantas FJS, Bezerra RJAC et al (2000) Damage induced by stannous chloride in plasmid DNA. Toxicol Lett 116:159–163. doi:10.1016/S0378-4274(00)00213-7

    Article  Google Scholar 

  35. Dobrzynski P, Kasperczyk J, Janeczek H, Bero M (2002) Synthesis of biodegradable glycolide/l-lactide copolymers using iron compounds as initiators. Polymer (Guildf) 43:2595–2601. doi:10.1016/S0032-3861(02)00079-4

    Article  CAS  Google Scholar 

  36. Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly(l-lactide) initiated with tin 2-ethylhexanoate. Die Makromol Chemie 188:1809–1814. doi:10.1002/macp.1987.021880804

    Article  CAS  Google Scholar 

  37. Chmura AJ, Davidson MG, Frankis CJ et al (2008) Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem Commun. doi:10.1039/B718678A

    Google Scholar 

  38. Silindir M, Ozer Y (2012) The effect of radiation on a variety of pharmaceuticals and materials containing polymers. PDA J Pharm Sci Technol 66:184–199. doi:10.5731/pdajpst.2012.00774

    Article  CAS  Google Scholar 

  39. Bozdag S, Su H (2002) Influence of irradiation sterilization on poly (lactide-co-glycolide) microspheres containing anti-inflammatory drugs. Farm 57:55–62

    Article  Google Scholar 

  40. Lee JS, Chae GS, Khang G, Gu D (2003) The effect of gamma irradiation on PLGA and release behavior of BCNU from PLGA wafer. Macromol Res 11:352–356

    Article  CAS  Google Scholar 

  41. Shahabi S, Najafi F, Majdabadi A et al (2014) Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Sci World J 2014:420616. doi:10.1155/2014/420616

    Article  Google Scholar 

  42. Jo S-Y, Park J-S, Gwon H-J et al (2012) Degradation behavior of poly (l-lactide-co-glycolide) films through gamma-ray irradiation. Radiat Phys Chem 81:846–850. doi:10.1016/j.radphyschem.2012.03.013

    Article  CAS  Google Scholar 

  43. Phong L, Han ESC, Xiong S et al (2010) Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation. Polym Degrad Stab 95:771–777. doi:10.1016/j.polymdegradstab.2010.02.012

    Article  CAS  Google Scholar 

  44. Loo SCJ, Ooi CP, Boey YCF (2005) Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly(lactide-co-glycolide) (PLGA). Biomaterials 26:3809–3817. doi:10.1016/j.biomaterials.2004.10.014

    Article  CAS  Google Scholar 

  45. Davidson MG, Doherty CL, Johnson AL, Mahon MF (2003) Isolation and characterisation of transition and main group metal complexes supported by hydrogen-bonded zwitterionic polyphenolic ligands. Electronic supplementary information (ESI) available: full synthetic and spectroscopic details. See http://www.rsc.or. Chem Commun 1832. doi:10.1039/b303618a

  46. International Atomic Energy Agency (IAEA) (2008) Trends in radiation sterilization of health care products, 1st edn. International Atomic Energy Agency, Vienna

    Google Scholar 

  47. Carey FA, Sundberg RJ (2007) Advanced organic chemistry. doi:10.1007/978-0-387-44899-2

  48. Hu W, Huang Z-M, Liu X-Y (2010) Development of braided drug-loaded nanofiber sutures. Nanotechnology 21:315104. doi:10.1088/0957-4484/21/31/315104

    Article  Google Scholar 

  49. Kasperczyk J (1996) Microstructural analysis of poly[(l,l-lactide)-co-(glycolide)] by 1H and 13C NMR spectroscopy. Polymer 37:201–203

    Article  CAS  Google Scholar 

  50. GrijpmA D, Nijenhuis A, Pennings A (1990) Synthesis and hydrolytic degradation behaviour of high-molecular-weight l-lactide and glycolide copolymers. Polymer 31:2201–2206. doi:10.1016/0032-3861(90)90096-H

    Article  CAS  Google Scholar 

  51. Kricheldorf HR, Kreiser I (1987) Cationic copolymerization of glycolide with l,l-dilactide. Die Makromol Chem 188:1861–1873

    Article  CAS  Google Scholar 

  52. Gao Q, Lan P, Shao H, Xu X (2002) Direct synthesis with melt polycondensation and microstructure analysis of poly (l-lactic acid-co-glycolic acid). Polym J 34:786–793. doi:10.1295/polymj.34.786

    Article  CAS  Google Scholar 

  53. Milicevic D, Trifunovic S, Galovic S, Suljovrujic E (2007) Thermal and crystallization behaviour of gamma irradiated PLLA. Radiat Phys Chem 76:1376–1380. doi:10.1016/j.radphyschem.2007.02.035

    Article  CAS  Google Scholar 

  54. Tahtah D, Mahlous M, Benamer S et al (2012) Effect of molecular weight on radiation chemical degradation yield of chain scission of gamma-irradiated chitosan in solid state and in aqueous solution. Radiat Phys Chem 81:659–665

    Article  Google Scholar 

  55. Nugroho P, Mitomo H, Yoshii F, Kume T (2001) Degradation of poly (l-lactic acid) by gamma-irradiation. Polym Degrad Stab 72:1–5

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the “Conselho Nacional de Desenvolvimento Científico Tecnológico” (CNPq-142434/2013-2) and the Ciência sem Fronteiras programme (200313/2014-2) for funding. We also wish to thank the Radiation Technology Centre (CTR) of the Nuclear Energy Research Institute (IPEN) for the irradiation of samples and Prof. Dr. Reinaldo Giuduci from the University of São Paulo, Chemical Engineering Department, and LSCP for his help in the preparation of l-lactide.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew David Jones or Carlos Alberto Zeituni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Peleias Junior, F., Jones, M.D., Zeituni, C.A. et al. Synthesis of PLGA using a C 3-symmetric Zr (IV) amine tris(phenolate) alkoxide initiator and the effects of gamma radiation on its properties. Polym. Bull. 74, 91–105 (2017). https://doi.org/10.1007/s00289-016-1699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1699-y

Keywords

Navigation