Skip to main content
Log in

β-Chitin/gelatin/nanohydroxyapatite composite scaffold prepared through freeze-drying method for tissue engineering applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The nanocomposite scaffolds were synthesized using freeze-drying method by blending β-chitin hydrogel (CT), gelatin (GE) and nanohydroxyapatite (nHAp) in the inorganic/organic different weight ratio. The nHAp was developed using calcium nitrate and diammonium hydrogenphosphate as the precursors of inorganic phase. The prepared nHAp and composite scaffolds were characterized using BET, SEM, FT-IR, XRD, and TGA studies. The composite scaffolds were found to have 70–76 % porosity with well-defined interconnected porous structure. Swelling studies of CT and CT/GE/nHAp composite scaffolds presented high swelling. The prepared scaffold materials are biodegradability and show less than 20 % mass loss after 4 weeks incubation in a phosphate-buffered saline (PBS) medium containing lysozyme (10,000 U/mL) at 37 °C. Moreover, the cell viability, adhesion and rapid growth using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and mouse preosteoblast cell implied the cytocompatibility nature of the composite scaffolds. These results prove that this material can be an ability to be a candidate for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He J, Wang D, Cui S (2012) Novel hydroxyapatite/tussah silk fibroin/chitosan bone-like nanocomposites. Polym Bull 68:1765–1776

    Article  CAS  Google Scholar 

  2. Wen G, Wang J, Li M, Meng X (2007) Study on tissue engineering scaffolds of silk fibroin-chitosan/nano-hydroxyapatite composite. Key Eng Mater 330:971–975

    Article  Google Scholar 

  3. Mohamed KR, Beherei HH, EL-Rashidy ZM (2014) In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J Ad Res 5:201–208

    Article  CAS  Google Scholar 

  4. Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577

    Article  CAS  Google Scholar 

  5. Kazemzadeh Narbat M, Orang F, Solati Hashtjin M, Goudarzi A (2006) Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran Biomed J 10:215–223

    Google Scholar 

  6. Kim HS, Kim JT, Jung YJ (2007) Preparation of a porous chitosan/fibroin-hydroxyapatite composite matrix for tissue engineering. Macromol Res 15:65–73

    Article  CAS  Google Scholar 

  7. Chang MC (2008) Modification of hydroxyapatite/gelatin nanocomposite with the addition of chondroitin sulfate. J Korea Ceram Soc 45:573–578

    Article  CAS  Google Scholar 

  8. Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N et al (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5

    Article  CAS  Google Scholar 

  9. Askarzadeh K, Orang F, Moztarzadeh F (2005) Fabrication and characterization of a porous composite scaffold based on gelatin and hydroxyapatite for bone tissue engineering. Iran Polym J 14:511–520

    CAS  Google Scholar 

  10. Madhumathi K, Sudheesh Kumar PT, Kavya KC, Furuike T, Tamura H, Nair SV et al (2009) Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromol 45:289–292

    Article  CAS  Google Scholar 

  11. Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767

    Article  Google Scholar 

  12. Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Srinivasan S, Chennazhi KP et al (2011) Fabrication of chitin–chitosan/nanoZrO2 composite scaffolds for tissue engineering applications. Int J Biol Macromol 48:336–344

    Article  CAS  Google Scholar 

  13. Jayakumar R, Chennazhi KP, Srinivasan S, Shantikumar VN, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12:1876–1887

    Article  CAS  Google Scholar 

  14. Sudheesh Kumar PT, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R (2011) β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 85:584–591

    Article  CAS  Google Scholar 

  15. Sudheesh Kumara PT, Srinivasana S, Lakshmanana VK, Tamurab H, Naira SV, Jayakumar R (2011) Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int J Biol Macromol 49:20–31

    Article  Google Scholar 

  16. Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H et al (2010) Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 80:687–694

    Article  CAS  Google Scholar 

  17. Hwang DS, Kim UK, Chang MC, Kim YD, Shin SH, Chung IK (2009) Osteogenic differentiation of stem cells in a gelatin-hydroxyapatite nanocomposite. Tissue Eng Regen Med 6:1107–1113

    Google Scholar 

  18. Azami M, Rabiee M, Moztarzadeh F (2010) Gelatin/hydroxyapatite nanocomposite scaffolds for bone repair. Soc Plast Eng 10:1–2

    Google Scholar 

  19. Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomater 26:5221–5230

    Article  CAS  Google Scholar 

  20. Kim HW, Knowles JC, Kim HE (2005) Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res A 72:136–145

    Article  Google Scholar 

  21. Azami M, Rabiee M, Moztarzadeh F (2010) Glutaraldehyde crosslinked gelatin/hydroxyapatite nanocomposite scaffold, engineered via compound techniques. Polym Compos 31:2112–2120

    Article  CAS  Google Scholar 

  22. Ghorbanian L, Emadi R, Razavi SM, Shin H, Teimouri A (2013) Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol 58:275–280

    Article  CAS  Google Scholar 

  23. Teimouri A, Ghorbanian L, Najafi Chermahini A, Emadi R (2014) Fabrication and characterization of silk/forsterite composites for tissue engineering applications. Ceram Int 40:6405–6411

    Article  CAS  Google Scholar 

  24. Teimouri A, Ebrahimi R, Emadi R, Hashemi Beni B, Najafi Chermahini A (2015) Nano-composite of silk fibroin-chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology. Int J Biol Macromol 76:292–302

    Article  CAS  Google Scholar 

  25. Teimouri A, Ebrahimi R, Najafi Chermahini A, Emadi R (2015) Fabrication and characterization of silk fibroin/chitosan/nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv 5:27558–27570

    Article  CAS  Google Scholar 

  26. Teimouri A, Azadi M, Emadi R, Lari J, Najafi Chermahini A (2015) Preparation, characterization, degradation and biocompatibility of different silk fibroin based composite scaffolds prepared by freeze-drying method for tissue engineering application. Polym Degrad Stab 121:18–29

    Article  CAS  Google Scholar 

  27. Azadi M, Teimouri A, Mehranzadeh G (2016) Preparation, characterization and biocompatible properties of β-chitin/silk fibroin/nanohydroxyapatite composite scaffolds prepared by freeze-drying method. RSC Adv 6:7048–7060

    Article  CAS  Google Scholar 

  28. Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13:357–364

    Article  CAS  Google Scholar 

  29. Stotzel C, Muller FA, Reinert F, Niederdraenk F, Barralet JE, Gbureck U (2009) Ion adsorption behaviour of hydroxyapatite with different crystallinities. Coll Surf B Biointer 74:91–95

    Article  CAS  Google Scholar 

  30. Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  Google Scholar 

  31. Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng, C 29:1207–1215

    Article  CAS  Google Scholar 

  32. Meskinfam M, Sadjadi MS, Jazdarreh H (2011) Biomimetic preparation of nano hydroxyapatite in gelatin-starch matrix. Eng Technol 52:395–398

    Google Scholar 

  33. Han JK, Song HY, Saito F, Lee BT (2006) Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 99:235–239

    Article  CAS  Google Scholar 

  34. Zdravkov BD, Cermak JJ, Sefara M, Janku J (2007) Pore classification in the characterization of porous materials: A perspective. Cent Europ J Chem 5:385–395

    CAS  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquero J et al (1985) Reporting physisoprtion data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Massah AR, Kalbasi RJ, Azadi M (2012) Highly selective oxidation of alcohols using MnO2/TiO2-ZrO2 as a novel heterogeneous catalyst. C R Chimie 15:428–436

    Article  CAS  Google Scholar 

  37. Thein-Han WW, Misra RD (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  CAS  Google Scholar 

  38. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350

    Article  Google Scholar 

  39. Huang YC, Chu HW (2013) Using hydroxyapatite from fish scales to prepare chitosan/gelatin/hydroxyapatite membrane: exploring potential for bone tissue engineering. J Mar Sci Tech 21:716–722

    Google Scholar 

Download references

Acknowledgments

Supports from Payame Noor University in Isfahan Research Council (Grant No. 84910) and contribution from Isfahan University of Technology are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Teimouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimouri, A., Azadi, M. β-Chitin/gelatin/nanohydroxyapatite composite scaffold prepared through freeze-drying method for tissue engineering applications. Polym. Bull. 73, 3513–3529 (2016). https://doi.org/10.1007/s00289-016-1691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1691-6

Keywords

Navigation