Skip to main content

Advertisement

Log in

Effect of CO2 plasma exposure on physico-chemical properties of porous polycaprolactone scaffold

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbon dioxide plasma was employed for the surface modification of tubular poly(caprolactone) porous matrix. Effect of plasma exposure over surface functionality, mechanical properties, surface morphology, pore size and crystal structure was investigated. Plasma modification is useful in achieving desired surface chemical properties without much alteration in the bulk properties of material. This process yields a porous tubular structure of 40 ± 11 MPa tensile strength, 464 ± 101 % tensile strain, 226 ± 41 g f suture retention strength and 52 % crystallinity. Profound influence of plasma exposure time over pore size and crystal form transition has been observed. Surface became hydrophilic in nature as evident from the low contact angle with 60 s exposure. The resulted surface-modified PCL tubular porous matrix with –COOH density of 40 nM/cm2 can anchor maximum of 2.67 mg/cm2 gelatin on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fridman A, Kennedy LA (2011) Plasma physics and engineering. CRC Press, New York

    Google Scholar 

  2. Ozdemir M, Yurteri CU, Sadikoglu H (1999) Physical polymer surface modification methods and applications in food packaging polymers. Crit Rev Food Sci Nutr 39:457–477

    Article  CAS  Google Scholar 

  3. Médard N, Soutif J, Poncin-Epaillard F (2002) CO2, H2O, and CO2/H2O plasma chemistry for polyethylene surface modification. Langmuir 18:2246–2253

    Article  Google Scholar 

  4. Poncin-Epaillard F, Médard N, Soutif J (2000) Reactivity of surface groups attached on a plasma treated poly(propylene) film. Application to a new concept of a chelating membrane. Macromol Chem Phys 201:212–219

    Article  CAS  Google Scholar 

  5. Shen H, Hu X, Bei J, Wang S (2008) The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials 29:2388–2399

    Article  CAS  Google Scholar 

  6. Médard N, Soutif J, Poncin-Epaillard F (2002) Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surf Coat Technol 160:197–205

    Article  Google Scholar 

  7. Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid Surf B 60:137–157

    Article  CAS  Google Scholar 

  8. Zhang W, Chu PK, Ji J, Zhang Y, Fu RKY, Yan Q (2006) Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 47:931–936

    Article  CAS  Google Scholar 

  9. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  10. Yu H-Y, Hu M-X, Xu Z-K, Wang J-L, Wang S-Y (2005) Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Sep Purif Technol 45:8–15

    Article  Google Scholar 

  11. Gupta B, Hilborn J, Hollenstein Ch, Plummer CJG, Houriet R, Xanthopoulos N (2000) Surface modification of polyester films by RF plasma. J Appl Polym Sci 78:1083–1091

    Article  CAS  Google Scholar 

  12. Gupta B, Krishnanand K, Deopura BL, Atthoff B (2013) Surface modification of polycaprolactone monofilament by low pressure oxygen plasma. J Appl Polym Sci 127:1744–1750

    Article  CAS  Google Scholar 

  13. Saxena S, Ray AR, Gupta B (2010) Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. J Appl Polym Sci 116:2884–2892

    CAS  Google Scholar 

  14. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Del Rev 61:1033–1042

    Article  CAS  Google Scholar 

  15. Ho SP, Britton DHO (1994) Arg—Gly—Asp peptides in polyurethanes: design, synthesis, and characterization. Adv Mater 6:130–132

    Article  CAS  Google Scholar 

  16. Steffens GCM, Nothdurft L, Buse G, Thissen H, Hocker H, Klee D (2002) High density binding of proteins and peptides to poly(d, l-lactide) grafted with polyacrylic acid. Biomaterials 23:3523–3531

    Article  CAS  Google Scholar 

  17. Vladkova TG (2010) Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polym Sci. doi:10.1155/2010/296094

    Google Scholar 

  18. Nguyen MK, Alsberg E (2014) Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 39:1236–1265

    Article  Google Scholar 

  19. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  20. Gupta B, Saxena S, Ray AR (2008) Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament. J Appl Polym Sci 107:324–330

    Article  CAS  Google Scholar 

  21. Park K, Ju YM, Son JS, Ahn KD, Han DK (2007) Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed 18:369–382

    Article  CAS  Google Scholar 

  22. De Geyter N, Morent R (2012) Non-thermal plasma surface modification of biodegradable polymers. In: Ghista DN (ed) Biomedical science, engineering and technology, InTech, pp 225–246

  23. Mirmohammadi SA, Khorasani MT, Mirzadeh H, Irani S (2012) Investigation of plasma treatment on poly(3-hydroxybutyrate) film surface: characterization and invitro assay. Polym Plast Technol Eng 51:1319–1326

    Article  CAS  Google Scholar 

  24. Nandakumar A, Tahmasebi Birgani Z, Santos D, Mentink A, Auffermann N, van derWerf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P (2013) Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication 5:015006. doi:10.1088/1758-5082/5/1/015006

    Article  CAS  Google Scholar 

  25. Hettlich H-J, Otterbach F, Mittermayer C, Kaufmann R, Klee D (1991) Plasma-induced surface modifications on suicone intraocular lenses: chemical analysis and in vitro characterization. Biomaterials 12:521–524

    Article  CAS  Google Scholar 

  26. Yan D, Jones J, Yuan X, Xu X, Sheng J, Lee JC-M, Ma G, Yu Q (2013) Plasma treatment of random and aligned electrospun pcl nanofibers. J Med Biol Eng 33:171–178

    Article  Google Scholar 

  27. Almazán-Almazán MC, Paredes JI, Pérez-Mendoza M, Domingo-García M, López-Garzón FJ, Martínez-Alonso A, Tascón JMD (2005) Effects of oxygen and carbon dioxide plasmas on the surface of poly(ethylene terephthalate). J Colloid Interface Sci 287:57–66

    Article  Google Scholar 

  28. Yu H-Y, Xie Y-J, Hu M-X, Wang J-L, Wang S-Y, Xu Z-K (2005) Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J Membr Sci 254:219–227

    Article  CAS  Google Scholar 

  29. He X-C, Yu H-Y, Tang Z-Q, Liu L-Q, Yan M-G, Gu J-S, Wei X-W (2009) Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification. Desalination 244:80–89

    Article  CAS  Google Scholar 

  30. Pal S, Ghatak SK, De S, DasGupta S (2008) Characterization of CO2 plasma treated polymeric membranes and quantification of flux enhancement. J Membr Sci 323:1–10

    Article  CAS  Google Scholar 

  31. Suzuki M, Kishida A, Iwata H, Ikada Y (1986) Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules 19:1804–1808

    Article  CAS  Google Scholar 

  32. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H, Wystrychowski W, Zagalski K, Maruszewski M, Jones AL, Cierpka L, de la Fuente LM, L’Heureux N (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550

    Article  CAS  Google Scholar 

  33. Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO, Mottaghy K (2009) The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 54:73–83

    Article  CAS  Google Scholar 

  34. Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA (2010) A bi-layered elastomeric scaffold for tissue engineering of small-diameter vascular grafts. Acta Biomater 6:110–122

    Article  CAS  Google Scholar 

  35. Terligen JGA, Gerritsen HFC, Hoffman AS, Feijen J (1995) Introduction of functional groups on polyethylene surfaces by a carbon dioxide plasma treatment. J Appl Polym Sci 57:969–982

    Article  Google Scholar 

  36. Poncin-Epaillard F, Brosse JC, Falher T (1997) Cold plasma treatment: surface or bulk modification of polymer films. Macromolecules 30:4415–4420

    Article  CAS  Google Scholar 

  37. Bittiger H, Marchessault RH, Niegisch WD (1970) Crystal structure of poly-ε-caprolactone. Acta Cryst B 26:1923–1927

    Article  CAS  Google Scholar 

  38. Chatini Y, Okita Y, Tadokoro H, Yamashita Y (1970) Structural studies of polyesters. iii. Crystal structure of poly-ε-caprolactone. Polym J 1:555–562

    Article  Google Scholar 

  39. Gupta B, Patra S, Ray AR (2013) Preparation of tubular porous polycaprolactone scaffold by precoagulation evaporation (PCE) method. J Biomater Tissue Eng 3:523–533

    Article  CAS  Google Scholar 

  40. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer : polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  41. Gupta B, Patra S, Ray AR (2012) Preparation of porous polycaprolactone tubular matrix by salt leaching process. J Appl Polym Sci 126:1505–1510

    Article  CAS  Google Scholar 

  42. Patra S, Remy M, Ray AR, Brouillaud B, Amedee J, Gupta B, Bordenave L (2013) A novel route to polycaprolactone scaffold for vascular tissue engineering. J Biomater Tissue Eng 3:289–299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvanesh Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S., Anjum, S., Ray, A.R. et al. Effect of CO2 plasma exposure on physico-chemical properties of porous polycaprolactone scaffold. Polym. Bull. 73, 1875–1890 (2016). https://doi.org/10.1007/s00289-015-1582-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1582-2

Keywords

Navigation