Skip to main content
Log in

Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In our present work, a novel controlled radical polymerization system is developed based on xanthene-9-thione (XT). It was found that the radical polymerization of styrene (St) became controlled in the presence of a small amount of XT. At the early stage of the polymerization, the polymerization rate was relatively low and the as-formed polystyrene (PS) had low number-average molecular weight (Mn) and narrow polydispersity (Ð). After XT was consumed, the polymerization rate increased dramatically and the Mn of PS increased gradually with polymerization proceeding. When the polymerization of St was carried out with a proper molar ratio of initiator to XT and at an appropriate temperature, shortened slow polymerization stage and good control over Mn could be achieved. To further improve the regulating ability of XT, a series of substituent groups (-CF3, -CH(CH3)2, -N(CH3)2) were introduced onto the xanthene ring of XT, and the effects of these derivatives on the polymerization of St were investigated in detail. UV-Vis spectroscopy was carried out to monitor the concentration of XT during the polymerization and the chemical structure of the as-formed PS was fully characterized by 1HNMR and ESI-MS analysis. A possible mechanism involving the formation and evolution of the cross-termination products was proposed to interpret the observed polymerization behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra, A. K.; Choi, C.; Maiti, S.; Seo, Y.; Lee, K. S.; Kim, E.; Kim, J. K. Sequential synthesis of well-defined poly(vinyl acetate)-block-polystyrene and poly(vinyl alcohol)-blockpolystyrene copolymers using difunctional chloroamidexanthate iniferter. Polymer 2018, 139, 68–75.

    Article  CAS  Google Scholar 

  2. Kutcherlapati, S. R.; Koyilapu, R.; Jana, T. Poly(N-vinyl imidazole) grafted silica nanofillers: Synthesis by RAFT polymerization and nanocomposites with polybenzimidazole. J. Polym. Sci., Part A: Polym. Chem. 2018, 56(4), 365–375.

    Article  CAS  Google Scholar 

  3. Díaz-Silvestre, S.; Saldívar-Guerra E.; Rivera-Vallejo, C.; Thomas, C. S.; Cabello-Romero, J.; Guerrero-Santos, R.; Jiménez-Regalado, E. Synthesis of associative block copolymers electrolytes via RAFT polymerization. Polym. Bull. 2018, 75(3), 891–907.

    Article  CAS  Google Scholar 

  4. Semsarzadeh, M. A.; Sabzevari, A. Highly effective organometallic-mediated radical polymerization of vinyl acetate using alumina-supported Co(acac)2 catalyst: A case study of adsorption and polymerization. J. Appl. Polym. Sci. 2018, 135(13), 46057.

    Article  CAS  Google Scholar 

  5. Bensabeh, N.; Ronda, J. C.; Galià, M.; Cádiz, V.; Lligadas, G.; Percec, V. SET-LRP of the hydrophobic biobased menthyl acrylate. Biomacromolecules 2018, 19(4), 1256–1268.

    Article  CAS  PubMed  Google Scholar 

  6. Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136(18), 6513.

    Article  CAS  PubMed  Google Scholar 

  7. Fu, X.; Yuan, Y.; Chen, X.; Xiao, Y.; Wang, J.; Zhou, C.; Lei, J. Use of short isobornyl methacrylate building blocks to improve the heat and oil resistance of thermoplastic elastomers via RAFT emulsion polymerization. J. Appl. Polym. Sci. 2017, 134(40), 45379.

    Article  CAS  Google Scholar 

  8. Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101(12), 3661.

    Article  CAS  PubMed  Google Scholar 

  9. Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101(9), 866–868.

    Article  CAS  Google Scholar 

  10. Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of raft polymerization: recent advances and new horizons. Macromolecules 2015, 48(16), 5459–5469.

    Article  CAS  Google Scholar 

  11. Li, Q. L.; Li, L.; Wang, H. S.; Wang, R.; Wang, W.; Jiang, Y. J.; Tian, Q.; Liu, J. P. The doubly thermo-responsive triblock copolymer nanoparticles prepared through seeded RAFT polymerization. Chinese J. Polym. Sci. 2017, 35(1), 66–77.

    Article  CAS  Google Scholar 

  12. Goto A.; Sato K.; Tsujii, Y.; Fukuda, T.; Moad G.; Rizzardo, E.; Thang, S. H. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001, 34(3), 402–408.

    Article  CAS  Google Scholar 

  13. Poller, L.; Thomson, J. M. Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS.Polym. Chem. 2015, 6(30), 5437–5450.

    Article  CAS  Google Scholar 

  14. Ranieri, K.; Delaittre, G.; Barner-kowollik, C.; Thomas, J. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping. Macromol. Rapid Commun. 2014, 35(23), 2023.

    Article  CAS  PubMed  Google Scholar 

  15. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 1999, 32, 6977–6980.

    Article  CAS  Google Scholar 

  16. Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Thiocarbonylthio compounds (SC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). effect of the activating group Z. Macromolecules 2003, 36(7), 2273–2283.

    Article  CAS  Google Scholar 

  17. Moad, G.; Chiefari J, Mayadunne, R. T. A.; Moad, C. L.; Postma, A.; Rizzardo, E.; Thang, S. H. Initiating free radical polymerization. Macromol. Symp. 2002, 182, 65–80.

    Article  CAS  Google Scholar 

  18. Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49(9), 993–1001.

    Article  CAS  Google Scholar 

  19. Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition–fragmentation equilibrium. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(9), 1353–1365.

    Article  CAS  Google Scholar 

  20. Monteiro, M. J.; Brouwer, H. D. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerisation. Macromolecules 2001, 34(3), 349–352.

    Article  CAS  Google Scholar 

  21. Feldermann, A.; Coote, M. L.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization. J. Am. Chem. Soc. 2004, 126(48), 15915–15923.

    Article  CAS  PubMed  Google Scholar 

  22. Toy, A. A.; Chaffey-Millar, H.; Davis, T. P.; Stenzel, M. H.; Izgorodina, E. I.; Coote, M. L.; Barner-Kowollik, C. Thioketone spin traps as mediating agents for free radical polymerization processes. Chem. Commun. 2006, 8(8), 835–837.

    Article  CAS  Google Scholar 

  23. Junkers, T.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Thioketone-mediated polymerization of butyl acrylate: controlling free-radical polymerization via a dormant radical species. Macromol. Rapid Commun. 2010, 28(6), 746–753.

    Article  CAS  Google Scholar 

  24. Zheng, X.; Yue, M.; Yang, P.; Li, Q.; Yang, W. Cycloketyl radical mediated living polymerization. Polym. Chem. 2012, 3(8), 1982–1986.

    Article  CAS  Google Scholar 

  25. Huang, X.; Wang, L.; Yang, W. Preparation of core-shell particles by surface-initiated cycloketyl radical mediated living polymerization. Polym. Chem. 2015, 6(37), 6664–6670.

    Article  CAS  Google Scholar 

  26. Yao, C.; Wang, L.; Yang, W. Cycloketyl radical mediated suspension polymerization of styrene. RSC Adv. 2016, 6(74), 69743.

    Article  CAS  Google Scholar 

  27. Wertz, S.; Leifert, D.; Studer, A. Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): synthesis of fluorenones and xanthones. Org. Lett. 2013, 15(4), 928–931.

    Article  CAS  PubMed  Google Scholar 

  28. Hadjipavlou, C.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. Synthesis and antiproliferative activity of substituted benzopyranoisoindoles: a new class of cytotoxic compounds. Bioorg. Med. Chem. Lett. 2006, 16(18), 4822–4825.

    Article  CAS  PubMed  Google Scholar 

  29. Lakouraj, M. M.; Mohseni, S. M. Synthesis, characterization, and biological activities of organosoluble and thermally stable xanthone-based polyamides. J. Mater. Sci. 2015, 26(3), 234–244.

    CAS  Google Scholar 

  30. Nakatake, D.; Yokote, Y.; Matsushima, Y.; Yazaki, R.; Ohshima, T. A highly stable but highly reactive zinc catalyst for transesterification supported by a bis(imidazole) ligand. Green Chem. 2016, 18(6), 1524–1530.

    Article  CAS  Google Scholar 

  31. Günzler, F.; Junkers, T.; Barner-Kowollik, C. Studying the mechanism of thioketone-mediated polymerization via electrospray ionization mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 2010, 47(7), 1864–1876.

    Article  CAS  Google Scholar 

  32. Rodríguez-Sanchez, I.; Glossman-Mitnik, D.; Zaragoza-Contreras, E. A. Theoretical evaluation of the order of reactivity of transfer agents utilized in RAFT polymerization: group Z. J. Mol. Model. 2010, 16(1), 95–105.

    Article  CAS  PubMed  Google Scholar 

  33. Beaudoin, E.; Bertin, D.; Gigmes, D.; Marque, S. R. A.; Siri, D.; Tordo, P. Alkoxyamine C-ON bond homolysis: stereoelectronic effects. Eur. J. Org. Chem. 2006, 7, 1755–1768.

    Article  CAS  Google Scholar 

  34. Zubenko, D.; Tsentalovich, Y.; Lebedeva, N.; Kirilyuk, I.; Roshchupkina, G.; Zhurko, I.; Reznikov, V.; Marque, S. R. A.; Bagryanskaya, E. Laser flash photolysis and CIDNP studies of steric effects on coupling rate constants of imidazolidine nitroxide with carbon-centered radicals, methyl isobutyrate-2-yl and tert-butyl propionate-2-yl. J. Org. Chem 2006, 71(16), 6044–6052.

    Article  CAS  PubMed  Google Scholar 

  35. Marchand, J.; Autissier, L.; Guillaneuf, Y.; Couturier, J. L.; Gigmes, D.; Bertin, D. SG1 nitroxide analogues: a comparative study. Aust. J. Chem. 2010, 63, 1237–1244.

    Article  CAS  Google Scholar 

  36. Nicolasa, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21404004, and 21474006) and the Innovation and Promotion Project of Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Wan-Tai Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HY., Wang, J., Shao, JW. et al. Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives. Chin J Polym Sci 36, 1303–1311 (2018). https://doi.org/10.1007/s10118-018-2153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2153-4

Keywords

Navigation