Skip to main content
Log in

Analytical detection of stationary and dynamic patterns in a prey–predator model with reproductive Allee effect in prey growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Allee effect in population dynamics has a major impact in suppressing the paradox of enrichment through global bifurcation, and it can generate highly complex dynamics. The influence of the reproductive Allee effect, incorporated in the prey’s growth rate of a prey–predator model with Beddington–DeAngelis functional response, is investigated here. Preliminary local and global bifurcations are identified of the temporal model. Existence and non-existence of heterogeneous steady-state solutions of the spatio-temporal system are established for suitable ranges of parameter values. The spatio-temporal model satisfies Turing instability conditions, but numerical investigation reveals that the heterogeneous patterns corresponding to unstable Turing eigenmodes act as a transitory pattern. Inclusion of the reproductive Allee effect in the prey population has a destabilising effect on the coexistence equilibrium. For a range of parameter values, various branches of stationary solutions including mode-dependent Turing solutions and localized pattern solutions are identified using numerical bifurcation technique. The model is also capable to produce some complex dynamic patterns such as travelling wave, moving pulse solution, and spatio-temporal chaos for certain range of parameters and diffusivity along with appropriate choice of initial conditions. Judicious choices of parametrization for the Beddington–DeAngelis functional response help us to infer about the resulting patterns for similar prey–predator models with Holling type-II functional response and ratio-dependent functional response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The authors declare that the manuscript has no associated data.

References

  • Aguirre P, González-Olivares E, Sáez E (2009) Three limit cycles in a Leslie–Gower predator-prey model with additive Allee effect. SIAM J Appl Math 69(5):1244–1262

    MathSciNet  MATH  Google Scholar 

  • Ai S, Du Y, Peng R (2017) Traveling waves for a generalized Holling–Tanner predator–prey model. J Differ Equ 263(11):7782–7814

    MathSciNet  MATH  Google Scholar 

  • Al Saadi F, Champneys A (2021) Unified framework for localized patterns in reaction-diffusion systems; the Gray–Scott and Gierer–Meinhardt cases. Philos Trans R Soc A 379(2213):20200277

    MathSciNet  Google Scholar 

  • Al Saadi F, Champneys A, Gai C et al (2022) Spikes and localised patterns for a novel Schnakenberg model in the semi-strong interaction regime. Eur J Appl Math 33(1):133–152

    MathSciNet  MATH  Google Scholar 

  • Allee W (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Google Scholar 

  • Alonso D, Bartumeus F, Catalan J (2002) Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83(1):28–34

    Google Scholar 

  • Alves M, Hilker F (2017) Hunting cooperation and Allee effects in predators. J Theor Biol 419:13–22

    MathSciNet  MATH  Google Scholar 

  • Banerjee M, Petrovskii S (2011) Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor Ecol 37–53

  • Banerjee M, Volpert V (2016) Prey-predator model with a nonlocal consumption of prey. Chaos Interdiscip J Nonlinear Sci 26(8):083120

    MathSciNet  MATH  Google Scholar 

  • Banerjee M, Volpert V (2017) Spatio-temporal pattern formation in Rosenzweig–Macarthur model: effect of nonlocal interactions. Ecol Complex 30:2–10

    Google Scholar 

  • Banerjee M, Mukherjee N, Volpert V (2020) Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete Contin Dyn Syst S 13(8):2109

    MathSciNet  MATH  Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Animal Ecol 331–340

  • Belyakov L, Glebsky LY, Lerman L (1997) Abundance of stable stationary localized solutions to the generalized 1d Swift–Hohenberg equation. Comput Math Appl 34(2–4):253–266

    MathSciNet  MATH  Google Scholar 

  • Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evolut 22(4):185–191

    Google Scholar 

  • Boukal D, Berec L (2002) Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J Theor Biol 218(3):375–394

    MathSciNet  Google Scholar 

  • Brodie JED, Ridenhour B III, Brodie E (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56(10):2067–2082

    Google Scholar 

  • Burke J, Knobloch E (2007) Snakes and ladders: localized states in the Swift–Hohenberg equation. Phys Lett A 360(6):681–688

    MathSciNet  MATH  Google Scholar 

  • Cangelosi R, Wollkind D, Kealy-Dichone B et al (2015) Nonlinear stability analyses of turing patterns for a mussel-algae model. J Math Biol 70(6):1249–1294

    MathSciNet  MATH  Google Scholar 

  • Champneys A (1998) Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Physica D 112(1–2):158–186

    MathSciNet  MATH  Google Scholar 

  • Chowdhury PR, Petrovskii S, Banerjee M (2021) Oscillations and pattern formation in a slow-fast prey–predator system. Bull Math Biol 83(11):1–41

    MathSciNet  MATH  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. OUP Oxford, Oxford

    Google Scholar 

  • Cross M, Hohenberg P (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65(3):851

    MATH  Google Scholar 

  • Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour Model 3(4):481–538

    MathSciNet  MATH  Google Scholar 

  • Dey S, Banerjee M, Ghorai S (2022a) Analytical detection of stationary Turing pattern in a predator-prey system with generalist predator. Math Model Nat Phenom 17:33

    MathSciNet  MATH  Google Scholar 

  • Dey S, Banerjee M, Ghorai S (2022b) Bifurcation analysis and spatio-temporal patterns of a prey-predator model with hunting cooperation. Int J Bifurc Chaos 32(11):2250173

    MathSciNet  MATH  Google Scholar 

  • Ducrots A, Langlais M (2012) A singular reaction–diffusion system modelling prey-predator interactions: invasion and co-extinction waves. J Differ Equ 253(2):502–532

    MathSciNet  MATH  Google Scholar 

  • Dunbar S (1983) Travelling wave solutions of diffusive Lotka–Volterra equations. J Math Biol 17(1):11–32

    MathSciNet  MATH  Google Scholar 

  • Ermentrout B, Mahajan A (2003) Simulating, analyzing, and animating dynamical systems: a guide to xppaut for researchers and students. Appl Mech Rev 56(4):B53–B53

    Google Scholar 

  • Fryxell J, Lundberg P (2012) Individual behavior and community dynamics, vol 20. Springer, Berlin

    Google Scholar 

  • Fryxell J, Sinclair A, Caughley G (2014) Wildlife ecology, conservation, and management. Wiley, New York

    Google Scholar 

  • Gascoigne J, Lipcius R (2004) Allee effects driven by predation. J Appl Ecol 41(5):801–810

    Google Scholar 

  • Hale J (2010) Asymptotic behavior of dissipative systems. American Mathematical Society, New York

    Google Scholar 

  • Hayase Y, Ohta T (2000) Self-replicating pulses and Sierpinski gaskets in excitable media. Phys Rev E 62(5):5998

    Google Scholar 

  • Hillen T (1996) A Turing model with correlated random walk. J Math Biol 35(1):49–72

    MathSciNet  MATH  Google Scholar 

  • Holmes R, Schultz J (1988) Food availability for forest birds: effects of prey distribution and abundance on bird foraging. Can J Zool 66(3):720–728

    Google Scholar 

  • Huang W (2016) A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J Differ Equ 260(3):2190–2224

    MathSciNet  MATH  Google Scholar 

  • Jankovic M, Petrovskii S (2014) Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect. Thyroid Res 7(4):335–349

    Google Scholar 

  • Jeltsch F, Wissel C, Eber S et al (1992) Oscillating dispersal patterns of tephritid fly populations. Ecol Model 60(1):63–75

    Google Scholar 

  • Kang Y, Wedekin L (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67(5):1227–1259

    MathSciNet  MATH  Google Scholar 

  • Kazantsev V, Nekorkin V, Binczak S et al (2003) Spiking patterns emerging from wave instabilities in a one-dimensional neural lattice. Phys Rev E 68(1):017201

    MathSciNet  Google Scholar 

  • Klausmeier C (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Google Scholar 

  • Kondo S, Asai R (1995) A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376:765–768

    Google Scholar 

  • Kramer A, Dennis B, Liebhold A et al (2009) The evidence for Allee effects. Popul Ecol 51(3):341–354

    Google Scholar 

  • Kuussaari M, Saccheri I, Camara M, et al (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 384–392

  • Lehman J, Cáceres C (1993) Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in lake Michigan. Limnol Oceanogr 38(4):879–891

    Google Scholar 

  • Lewis M, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43(2):141–158

    MATH  Google Scholar 

  • Liu P, Shi J, Wang Y (2013) Bifurcation from a degenerate simple eigenvalue. J Funct Anal 264(10):2269–2299

    MathSciNet  MATH  Google Scholar 

  • Lotka A (1920) Undamped oscillations derived from the law of mass action. J Am Chem Soc 42(8):1595–1599

    Google Scholar 

  • Lou Y, Ni W (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131

    MathSciNet  MATH  Google Scholar 

  • Mimura M, Murray J (1978) On a diffusive prey-predator model which exhibits patchiness. J Theor Biol 75(3):249–262

    MathSciNet  Google Scholar 

  • Molnar P, Derocher A, Lewis M et al (2008) Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc Roy Soc B Biol Sci 275(1631):217–226

    Google Scholar 

  • Morozov A, Petrovskii S, Li B (2006) Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J Theor Biol 238(1):18–35

    MathSciNet  MATH  Google Scholar 

  • Morozov A, Abbott K, Cuddington K et al (2020) Long transients in ecology: theory and applications. Phys Life Rev 32:1–40

    Google Scholar 

  • Mukherjee N, Volpert V (2021) Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. Commun Nonlinear Sci Numer Simul 96(105):677

    MathSciNet  MATH  Google Scholar 

  • Pang P, Wang M (2004) Strategy and stationary pattern in a three-species predator–prey model. J Differ Equ 200(2):245–273

    MathSciNet  MATH  Google Scholar 

  • Pao C (2012) Nonlinear parabolic and elliptic equations. Springer, Berlin

    Google Scholar 

  • Perko L (2000) Differential equations and dynamical systems. Springer, New York

    MATH  Google Scholar 

  • Petrovskii S, Malchow H (1999) A minimal model of pattern formation in a prey–predator system. Math Comput Model 29(8):49–63

    MathSciNet  MATH  Google Scholar 

  • Petrovskii S, Blackshaw R, Li B (2008) Consequences of the Allee effect and intraspecific competition on population persistence under adverse environmental conditions. Bull Math Biol 70(2):412–437

    MathSciNet  MATH  Google Scholar 

  • Přibylová L, Berec L (2015) Predator interference and stability of predator–prey dynamics. J Math Biol 71(2):301–323

    MathSciNet  MATH  Google Scholar 

  • Rohlf F (1969) The effect of clumped distributions in sparse populations. Ecology 50(4):716–721

    Google Scholar 

  • Segel L, Jackson J (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37(3):545–59

    Google Scholar 

  • Skalski G, Gilliam J (2001) Functional responses with predator interference: viable alternatives to the holling type ii model. Ecology 82(11):3083–3092

    Google Scholar 

  • Skov C, Chapman B, Baktoft H et al (2013) Migration confers survival benefits against avian predators for partially migratory freshwater fish. Biol Lett 9(2):20121178

    Google Scholar 

  • Smoller J (2012) Shock waves and reaction–diffusion equations, vol 258. Springer, Berlin

    MATH  Google Scholar 

  • Stephens P, Sutherland W, Freckleton R (1999) What is the Allee effect? Oikos 185–190

  • Stoner A, Davis M, Booker C (2012) Negative consequences of Allee effect are compounded by fishing pressure: comparison of queen conch reproduction in fishing grounds and a marine protected area. Bull Mar Sci 88(1):89–104

    Google Scholar 

  • Terry A (2015) Predator–prey models with component Allee effect for predator reproduction. J Math Biol 71(6):1325–1352

    MathSciNet  MATH  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc 237:37–72

    MathSciNet  MATH  Google Scholar 

  • Uecker H, Wetzel D, Rademacher J (2014) pde2path-a matlab package for continuation and bifurcation in 2d elliptic systems. Numer Math Theory Methods Appl 7(1):58–106

    MathSciNet  MATH  Google Scholar 

  • Venturino E, Petrovskii S (2013) Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol Complex 14:37–47

    Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C Ferrari

  • Wang W, Takeuchi Y, Saito Y et al (2006) Prey–predator system with parental care for predators. J Theor Biol 241(3):451–458

    MathSciNet  MATH  Google Scholar 

  • Wang X, Cai Y, Ma H (2013) Dynamics of a diffusive predator–prey model with Allee effect on predator. Discrete Dyn Nat Soc 2013

  • Woods P, Champneys A (1999) Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian–Hopf bifurcation. Physica D 129(3–4):147–170

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here we derive upper bounds for \(I_1\), \(I_2\) and \(I_3\) used in Theorem 5. Using proposition 1, we find

$$\begin{aligned} I_1&= \int _\Omega (u-{\bar{u}})^2 \big (-(u^2+u {\bar{u}}+\bar{u}^2)+(u+{\bar{u}})(u_1+u_2)-u_1u_2 \big ) dx\\&\le \int _\Omega (u-{\bar{u}})^2 \left[ (u+{\bar{u}})(u_1+u_2)-u_1u_2 \right] dx\\&\le u_1(2-u_2) \int _\Omega (u-{\bar{u}})^2 dx,\\ I_2&= \frac{1}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (u-\bar{u})\left( \frac{\alpha ({\bar{u}} {\bar{v}}-uv)+\beta v {\bar{v}}(\bar{u}-u)+u{\bar{u}} ({\bar{v}}-v)}{\alpha +u+\beta v}\right) dx\\&=\frac{1}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (u-\bar{u})\left( \frac{ {\bar{v}}({\bar{u}}-u)(\alpha +\beta v)+u ({\bar{v}}-v) (\alpha + {\bar{u}})}{\alpha +u+\beta v}\right) dx \\&\le \frac{(\alpha + {\bar{u}})}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (u-{\bar{u}})\frac{ u ({\bar{v}}-v) }{\alpha +u+\beta v}dx\\&\le \frac{u_1}{\alpha }\int _\Omega \vert (u-{\bar{u}})\,(v-{\bar{v}}) \vert dx\\&\le \frac{u_1}{2\alpha }\int _\Omega (u-\bar{u})^2dx+\frac{u_1}{2\alpha }\int _\Omega (v-{\bar{v}})^2dx, \end{aligned}$$

and

$$\begin{aligned} I_3&= \int _\Omega (v-{\bar{v}}){\bar{v}} \left( \frac{\gamma u}{\alpha +u+\beta v}-1\right) dx\\&=\int _\Omega (v-{\bar{v}}){\bar{v}} \left( \frac{\gamma u}{\alpha +u+\beta v}-\frac{\gamma {\bar{u}}}{\alpha +{\bar{u}}+\beta {\bar{v}}}\right) dx\\&=\frac{\gamma {\bar{v}}}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (v-{\bar{v}}) \frac{\alpha (u-{\bar{u}})+\beta (u{\bar{v}}-{\bar{u}} v)}{\alpha +u+\beta v} \,dx\\&= \frac{\gamma {\bar{v}}}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (v-{\bar{v}}) \frac{\beta u({\bar{v}}-v)+(u-{\bar{u}})(\alpha + \beta v)}{\alpha +u+\beta v}\, dx\\&\le \frac{\gamma {\bar{v}}}{\alpha +{\bar{u}}+\beta {\bar{v}}}\int _\Omega (v-{\bar{v}}) \frac{(u-{\bar{u}})(\alpha +\beta v)}{\alpha +u+\beta v} \,dx\\&\le \frac{\gamma }{\beta }\int _\Omega (v-{\bar{v}}) (u-{\bar{u}})\, dx \\&\le \frac{\gamma }{2 \beta }\int _\Omega (u-\bar{u})^2dx+\frac{\gamma }{2 \beta }\int _\Omega (v-{\bar{v}})^2dx. \end{aligned}$$

Appendix B

Fig. 11
figure 11

Turing pattern solution of various modes: a 19- mode solution for \(\sigma =1.939\), b 20- mode solution for \(\sigma =1.867\), c 21- mode solution for \(\sigma =1.812\). The color of a solution curve corresponds to the same color diamond point shown in Fig. 3b. Other parameter values are \(\alpha =0.07,\;\beta =0.2,\; \gamma =1.2, \;\eta =0.1\) and \(d=46.\)

Fig. 12
figure 12

Localized pattern solutions where the colour of a solution curve corresponds to the same color point shown in Fig. 3c. Other parameter values are \(\alpha =0.07,\;\beta =0.2,\; \gamma =1.2, \;\eta =0.1,\; \sigma =2.36\) and \(d=46.\)

Here we show 19-, 20- and 30- mode Turing solutions in Fig. 11 and few localized solutions in Fig. 12.

Appendix C

Fig. 13
figure 13

Periodic travelling wave solution at different times: a \(t=100\), b \(t=500,\) and c \(t=605\). Here, other parameter values are \(\alpha =0.07,\;\beta =0.2, \;\gamma =1.2,\;\eta =0.1,\;\sigma =1.82,\) and \(d=10\)

We consider the parameter set \(\alpha =0.07,\;\beta =0.2,\; \gamma =1.2, \;\eta =0.1,\; \sigma =1.82,\) and \(d=10\). We choose the same initial condition as in (33). Figure 13 shows the non-monotonic character of the travelling wave at an initial stage. However, as time progresses, new periodic peaks appear at the left side of the domain and these peaks oscillate with time. Note that, a stable limit cycle exists around the coexisting equilibrium point \(E_*\) for the temporal system and the appearance of the periodic travelling wave is attributed to this stable limit cycle. However, the oscillation of the periodic peaks disappears resulting in the emergence of a localized pattern for larger values of d.

Appendix D

Fig. 14
figure 14

a Bifurcation diagram in the \(\sigma \)-u plane for the ratio-dependent functional response. b A zoom version of Fig. (a) for \(\sigma \in [3.9,3.98]\). The point marked SN denotes the saddle-node bifurcation threshold. Here, solid green, red dashed and black dashed curves represent stable, unstable and saddle branches of equilibria respectively. Further, solid red color curve represents the maximum and minimum of u of the unstable limit cycle. Other parameter values are \(\alpha =0,\;\beta =0.2,\; \gamma =1.2\) and \(\eta =0.1\) (color figure online)

Here we compare our findings with other functional responses. If we assume \(\alpha =0\), then the resulting functional response is called a ratio-dependent functional response. The temporal dynamics of the system, keeping all other parameters the same with \(\alpha =0\), changes significantly. Here, two coexisting equilibria \(E_*^1\) and \(E_*^2\) emerge through a saddle-node bifurcation, where \(E_*^2\) is always a saddle-node and the stability of \(E_*^1\) depends on the Hopf bifurcation threshold \(\sigma _H.\) An unstable limit cycle is generated due to subcritical Hopf bifurcation at \(\sigma =\sigma _H\) which vanishes due to a global homoclinic bifurcation. The temporal dynamics is summarized in the one-parameter bifurcation diagram shown in Fig. 14. The corresponding spatio-temporal model shows stationary Turing and localized patterns. It also exhibits dynamic patterns that include multiple moving pulse solution, spatio-temporal chaos, and travelling wave.

Fig. 15
figure 15

Localized patterns for the system (12) with Holling type-II functional response: a \(d=90\), b \(d=100\), c \(d=110\). Here, other parameter values are \(\alpha =0.07,\;\beta =0,\; \gamma =1.11,\;\eta =0.1\) and \(\sigma =2\)

However, the chosen functional response becomes Holling type-II functional response for \(\beta =0\). Then the system can have at most one coexisting equilibrium point \(E_*\), whose feasibility comes from a transcritical bifurcation. However, the stability of \(E_*\) is independent of the parameter \(\sigma .\) If we take the parameter \(\gamma =1.11,\) then the unique coexisting equilibrium point \(E_*\) is asymptotically stable (whenever it exists) for all values of \(\sigma \). Although the system does not produce Turing pattern but it exhibits localized pattern. We have shown few localized patterns for different values of diffusion parameter d in Fig. 15. Apart from the stationary pattern, the system also shows dynamic patterns that include multiple moving pulse solution, spatio-temporal chaos and travelling wave solution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Ghorai, S. & Banerjee, M. Analytical detection of stationary and dynamic patterns in a prey–predator model with reproductive Allee effect in prey growth. J. Math. Biol. 87, 21 (2023). https://doi.org/10.1007/s00285-023-01957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-01957-x

Keywords

Mathematics Subject Classification

Navigation