Skip to main content
Log in

Theoretical growth rate of microalgae under high/low-flashing light

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dynamic light regimes strongly impact microalgal photosynthesis efficiency. Finding the optimal way to supply light is then a tricky problem, especially when the growth rate is inhibited by overexposition to light and, at the same time, there is a lack of light in the deepest part of the culture. In this paper, we use the Han model to study the theoretical microalgal growth rate by applying periodically two different light intensities. Two approaches are considered depending on the period of the light pattern. For a large light period, we demonstrate that the average photosynthetic rate can be improved under some conditions. Moreover, we can also enhance the growth rate at steady state as given by the PI-curve. Although, these conditions change through the depth of a bioreactor. This theoretical improvement in the range of 10–15% is due to a recovery of photoinhibited cells during the high irradiance phase. We give a minimal value of the duty cycle for which the optimal irradiance is perceived by the algae culture under flashing light regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Ghosh S, Fixler D, Dubinsky Z et al (2015) Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae. Bioresour Technol 187:144–148

    Article  Google Scholar 

  • Abu-Ghosh S, Fixler D, Dubinsky Z et al (2015) Flashing light enhancement of photosynthesis and growth occurs when photochemistry and photoprotection are balanced in dunaliella salina. Eur J Phycol 50(4):469–480. https://doi.org/10.1080/09670262.2015.1069404

    Article  Google Scholar 

  • Abu-Ghosh S, Fixler D, Dubinsky Z et al (2016) Flashing light in microalgae biotechnology. Bioresour Technol 203:357–363. https://doi.org/10.1016/j.biortech.2015.12.057

    Article  Google Scholar 

  • Baklouti M, Faure V, Pawlowski L et al (2006) Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (eco3m) dedicated to biogeochemical modelling. Progress Oceanogr 71(1):34–58. https://doi.org/10.1016/j.pocean.2006.05.003

    Article  Google Scholar 

  • Balamurugan S, Sathishkumar R, Li HY (2021) Biotechnological perspectives to augment the synthesis of valuable biomolecules from microalgae by employing wastewater. J Water Process Eng 39(101):713

    Google Scholar 

  • Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31(8):1648–1663

    Article  Google Scholar 

  • Bernard O, Lu LD (2021) Optimal optical conditions for Microalgal production in photobioreactors. https://hal.archives-ouvertes.fr/hal-03323094, submitted paper

  • Bernard O, Mairet F, Chachuat B (2015) Modelling of microalgae culture systems with applications to control and optimization. Microalgae Biotechnol 59–87

  • Combe C, Hartmann P, Rabouille S et al (2015) Long-term adaptive response to high-frequency light signals in the unicellular photosynthetic eukaryote Dunaliella salina. Biotechnol Bioeng 112(6):1111–1121

    Article  Google Scholar 

  • Demory D, Combe C, Hartmann P et al (2018) How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments. R Soc Open Sci 5(5):180523

    Article  Google Scholar 

  • Fernández-Sevilla JM, Brindley C, Jiménez-Ruíz N et al (2018) A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Res 35:479–487. https://doi.org/10.1016/j.algal.2018.09.026

    Article  Google Scholar 

  • Grenier J, Lopes F, Bonnefond H et al (2020) Worldwide perspectives of rotating algal biofilm up-scaling, submitted paper

  • Han BP (2002) A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. J Theor Biol 214(4):519–527. https://doi.org/10.1006/jtbi.2001.2468

    Article  Google Scholar 

  • Hartmann P, Béchet Q, Bernard O (2014) The effect of photosynthesis time scales on microalgae productivity. Bioprocess Biosyst Eng 37(1):17–25

    Article  Google Scholar 

  • Holmes G (2002) The use of hyperbolic cosines in solving cubic polynomials. Math Gaz 86(507):473–477

    Article  Google Scholar 

  • Khalil H (2002) Nonlinear systems. Prentice Hall, Hoboken

    MATH  Google Scholar 

  • Lamare PO, Aguillon N, Sainte-Marie J et al (2019) Gradient-based optimization of a rotating algal biofilm process. Automatica 105:80–88. https://doi.org/10.1016/j.automatica.2019.02.043

    Article  MathSciNet  MATH  Google Scholar 

  • Lu LD (2021) Lagrangian approach for modelling and optimization of coupled hydrodynamics-photosynthesis. Theses, Sorbonne Université. https://tel.archives-ouvertes.fr/tel-03625562

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res Oceans 93(C9):10749–10768

    Article  Google Scholar 

  • Nikolaou A, Bernardi A, Meneghesso A et al (2015) A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. J Biotechnol 194:91–99. https://doi.org/10.1016/j.jbiotec.2014.12.001

    Article  Google Scholar 

  • Nikolaou A, Hartmann P, Sciandra A et al (2016) Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth. J Theor Biol 390:61–72

    Article  MathSciNet  MATH  Google Scholar 

  • Pozzobon V, Perre P (2018) Han’s model parameters for microalgae grown under intermittent illumination: determined using particle swarm optimization. J Theor Biol 437:29–35. https://doi.org/10.1016/j.jtbi.2017.10.010

    Article  MATH  Google Scholar 

  • Prasil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery process. Top Photosynth 11:295–348

    Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142(1):87–104

    Article  MathSciNet  Google Scholar 

  • Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems. Applied mathematical sciences, 2nd edn. Springer, New York. https://doi.org/10.1007/978-0-387-48918-6

    Book  MATH  Google Scholar 

  • Schulze PS, Brindley C, Fernández JM et al (2020) Flashing light does not improve photosynthetic performance and growth of green microalgae. Bioresour Technol Rep 9(100):367

    Google Scholar 

  • Stramski D, Sciandra A, Claustre H (2002) Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol Oceanogr 47(2):392–403

    Article  Google Scholar 

  • Wu X, Merchuk JC (2001) A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem Eng Sci 56(11):3527–3538. https://doi.org/10.1016/S0009-2509(01)00048-3

    Article  Google Scholar 

  • Zwillinger D (2018) CRC standard mathematical tables and formulas. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Digitalgaesation project within the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 955520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Fierro Ulloa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytical computations

1.1 Case I: Large period T

For the large period case, the evolution system (7) can be approximated by (10) which can be solved explicitly for a constant irradiance I as

$$\begin{aligned} C(y,t)=\frac{\alpha (I(y))}{\alpha (I(y))+k_r}(1-e^{-(\alpha (I(y))+k_r)t})+e^{-(\alpha (I(y))+k_r)t}C(y,0), \quad t\in (0,T). \end{aligned}$$

Moreover, the system is assumed to be periodic (i.e. \(C(y,0)=C(y,T)\)). For the constant light regime \(I_M(y)\), one has \(C(y,t) = \frac{\alpha (I_M(y))}{\alpha (I_M(y))+k_r}\), \(\forall t\in [0,T]\). Using (18), the T-average growth rate is given by \((1-C)\gamma (I_M(y)) = \frac{K\sigma I_M(y)}{1+\tau \sigma I_M(y)+\frac{k_d}{k_r}\tau (\sigma I_M(y))^2} = \mu _S(I_M(y))\). For the high/low light regime, one has

$$\begin{aligned}{} & {} C(y,t)\\{} & {} =\left\{ \begin{array}{ll} \frac{\alpha _H(y)}{\alpha _H(y)+k_r}(1-e^{-(\alpha _H(y)+k_r)t})+e^{-(\alpha _H(y)+k_r)t}C(y,0), &{} t\in (0,\eta T) \\ \frac{\alpha _L(y)}{\alpha _L(y)+k_r}(1-e^{-(\alpha _L(y)+k_r)(t-\eta T)})+e^{-(\alpha _L(y)+k_r)(t-\eta T)}C(y,\eta T), &{} t\in (\eta T,T) \end{array}\right. \end{aligned}$$

Using the periodic border condition of C, one has

$$\begin{aligned} C(y,0) = \frac{ \frac{\alpha _L(y)}{\alpha _L(y)+k_r}\big (1-e^{-(\alpha _L(y)+k_r)T(1-\eta )}\big ) + e^{-(\alpha _L(y)+k_r)T(1-\eta )}\frac{\alpha _H(y)}{\alpha _H(y)+k_r}\big (1-e^{-(\alpha _H(y)+k_r)T\eta }\big ) }{1-e^{-(\alpha _L(y)+k_r)T(1-\eta )-(\alpha _H(y)+k_r)T\eta }}. \end{aligned}$$

For a given local optical depth y, the T-average growth rate is given by

$$\begin{aligned} {\bar{\mu }}^{\text {T}}(y)= & {} \frac{1}{T}\int _0^T\mu (y,t)\textrm{d} t\\= & {} \frac{1}{T}\big (\int _0^{\eta T}\mu (y,t)\textrm{d} t + \int _{\eta T}^T\mu (y,t)\textrm{d} t\big )\\= & {} \eta \frac{\gamma _H(y)k_r}{\alpha _H(y)+k_r} + (1-\eta )\frac{\gamma _L(y)k_r}{\alpha _L(y)+k_r}\\{} & {} +\frac{\gamma _H(y)}{T(\alpha _H(y)+k_r)}\left( \frac{\alpha _H(y)}{\alpha _H(y)+k_r}-C(y,0)\right) \left( 1-e^{-(\alpha _H(y)+k_r)T\eta }\right) \\{} & {} +\frac{\gamma _L(y)}{T(\alpha _L(y)+k_r)}\left( \frac{\alpha _L(y)}{\alpha _L(y)+k_r}-C(y,T\eta )\right) \left( 1-e^{-(\alpha _L(y)+k_r)T(1-\eta )}\right) \\= & {} \eta \mu _S(I_{H}(y))+(1-\eta )\mu _S(I_{L}(y)) + \frac{\zeta _1(y,\eta ,T)\zeta _2(y)}{T k_r}, \end{aligned}$$

where \(\gamma _H(y) := \gamma (I_H(y))\) and \(\gamma _L(y) := \gamma (I_L(y))\).

1.2 Case II: Small period T

For small period case, the dynamics of C is negligible (i.e. C is a constant). Integrating (7) from 0 to T gives

$$\begin{aligned} 0 = \int _0^T \dot{C} \textrm{d} t = -k_r T C - k_d\sigma C\int _0^T I \textrm{d} t + k_d\sigma \int _0^T I \textrm{d} t - k_d\sigma \int _0^T I A \textrm{d} t. \end{aligned}$$

Let us denote by \({\bar{I}}:=\frac{1}{T}\int _0^T I \textrm{d} t\) and by \({\overline{IA}}:=\frac{1}{T}\int _0^T I A \textrm{d} t\), then one finds the constant value for C as

$$\begin{aligned} C = \frac{k_d\sigma ({\bar{I}} - {\overline{IA}})}{k_d\sigma {\bar{I}}+k_r}. \end{aligned}$$
(A1)

For high/low light regime, one has

$$\begin{aligned} A(y,t) = \left\{ \begin{array}{lr} e^{-\beta _H(y)t}A(0) + \frac{1-C}{\tau \beta _H(y)}(1-e^{-\beta _H(y)t}), &{} t\in [0,\eta T],\\ e^{-\beta _L(y)(t-\eta T)}A(\eta T) + \frac{1-C}{\tau \beta _L(y)}(1-e^{-\beta _L(y)(t-\eta T)}), &{} t\in [\eta T,T]. \end{array} \right. \end{aligned}$$

The periodicity on A gives

$$\begin{aligned} A(y,0) = \frac{e^{-\beta _L(y)(1 - \eta )T}\frac{1-C}{\tau \beta _H(y)}(1 - e^{-\beta _H(y)\eta T}) + \frac{1-C}{\tau \beta _L(y)}(1 - e^{-\beta _L(y)(1 - \eta ) T})}{1-e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T}}. \end{aligned}$$

On the other hand, the average of IA can be computed by

$$\begin{aligned} T\overline{I A}= & {} \int _0^{\eta T}I_H(y) A(y,t)\textrm{d} t + \int _{\eta T}^T I_L(y) A(y,t)\textrm{d} t\\= & {} A(y,0)I_H(y)\frac{1 - e^{-\beta _H(y)\eta T}}{\beta _H(y)} + I_H(y)\frac{1-C}{\tau \beta _H(y)}(\eta T - \frac{1 - e^{-\beta _H(y)\eta T}}{\beta _H(y)}) \\{} & {} + A(y,\eta T)I_L(y)\frac{1 - e^{-\beta _L(y)(1-\eta )T}}{\beta _L(y)} + I_L(y)\frac{1-C}{\tau \beta _L(y)}\big ((1-\eta )T \\{} & {} - \frac{1 - e^{-\beta _L(y)(1-\eta )T}}{\beta _L(y)}\big )\\= & {} A(y,0)I_H(y)\frac{1 - e^{-\beta _H(y)\eta T}}{\beta _H(y)} + I_H(y)\frac{1-C}{\tau \beta _H(y)}(\eta T - \frac{1 - e^{-\beta _H(y)\eta T}}{\beta _H(y)})\\{} & {} + \big (e^{-\beta _H(y)\eta T}A(0) + \frac{1-C}{\tau \beta _H(y)}(1-e^{-\beta _H(y)\eta T})\big )I_L(y)\frac{1 - e^{-\beta _L(y)(1-\eta )T}}{\beta _L(y)}\\{} & {} + I_L(y)\frac{1-C}{\tau \beta _L(y)}\big ((1-\eta )T - \frac{1 - e^{-\beta _L(y)(1-\eta )T}}{\beta _L(y)}\big )\\= & {} \frac{A(y,0)}{\beta _H(y)\beta _L(y)}\big (I_H(y)\beta _L(y)(1-e^{-\beta _H(y)\eta T}) + I_L(y)\beta _H(y) e^{-\beta _H(y)\eta T}(1\\{} & {} - e^{-\beta _L(y)(1-\eta ) T})\big ) + \frac{1-C}{\tau \beta _H(y)\beta _L(y)}(I_H(y)\beta _L(y)\eta T \!+\! I_L(y)\beta _H(y)(1-\eta )T) \\{} & {} + \frac{1-C}{\tau \beta _L(y)^2\beta _H(y)^2}\big (I_L(y)\beta _H(y)\beta _L(y)(1 - e^{-\beta _H(y)\eta T})(1-e^{-\beta _L(y)(1-\eta ) T})\\{} & {} - I_H(y)\beta _L(y)^2(1-e^{-\beta _H(y)\eta T}) - I_L(y)\beta _H(y)^2(1-e^{-\beta _L(y)(1-\eta ) T})\big )\\= & {} \frac{1-C}{\tau \beta _L(y)^2\beta _H(y)^2}\frac{1}{1-e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T}}\big (I_H(y)\beta _L(y)^2(1\\{} & {} - e^{-\beta _H(y)\eta T})^2e^{-\beta _L(y)(1-\eta ) T} + I_L(y)\beta _L(y)\beta _H(y) e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T}(1\\{} & {} - e^{-\beta _H(y)\eta T})(1-e^{-\beta _L(y)(1-\eta ) T}) + I_H(y)\beta _L(y)\beta _H(y)(1\\{} & {} - e^{-\beta _H(y)\eta T})(1-e^{-\beta _L(y)(1-\eta ) T}) + I_L(y)\beta _H(y)^2e^{-\beta _H(y)\eta T}(1\\{} & {} - e^{-\beta _L(y)(1-\eta ) T})^2 + I_L(y)\beta _H(y)\beta _L(y)(1-e^{-\beta _H(y)\eta T})(1\\{} & {} - e^{-\beta _L(y)(1-\eta ) T})(1-e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T}) - I_H(y)\beta _L(y)^2(1\\{} & {} - e^{-\beta _H(y)\eta T})(1-e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T}) - I_L(y)\beta _H(y)^2(1\\{} & {} - e^{-\beta _L(y)(1-\eta ) T})(1-e^{-\beta _L(y)(1 - \eta )T - \beta _H(y)\eta T})\big )\\{} & {} + \frac{1-C}{\tau \beta _H(y)\beta _L(y)}(I_H(y)\beta _L(y)\eta T + I_L(y)\beta _H(y)(1-\eta )T).\\ \end{aligned}$$

To simplify the notations, let us denote by \(a:=-(\sigma I_{\max } + \frac{1}{\tau })\eta T\) and by \(i:=-(\sigma I_{\min } + \frac{1}{\tau })(1-\eta )T\), then \(A(0)=\frac{1-C}{\tau \beta _L\beta _H(y)}\frac{1}{1-e^{a+i}}(\beta _L e^i(1-e^a) + \beta _L(1-e^i))\) and the previous computation can be written as (we omitted the dependence on y)

$$\begin{aligned} T\overline{I A}= & {} A(0)I_H\frac{1-e^a}{\beta _H} + I_H\frac{1-C}{\tau \beta _H}(\eta T -\frac{1-e^a}{\beta _H}) + e^a A(0)I_L\frac{1-e^i}{\beta _L} \\{} & {} + \frac{1-C}{\tau \beta _H}(1-e^a)I_L\frac{1-e^i}{\beta _L} + I_L\frac{1-C}{\tau \beta _L}((1-\eta )T - \frac{1-e^i}{\beta _L})\\= & {} \frac{A(0)}{\beta _H\beta _L}(I_H\beta _H(1-e^a) + I_L\beta _L e^a(1-e^i)) \\{} & {} + \frac{1-C}{\tau \beta _H\beta _L}(I_H\beta _L\eta T + I_L\beta _H(1-\eta )T)\\{} & {} +\frac{1-C}{\tau \beta _H^2\beta _L^2}\big (I_L\beta _H\beta _L(1-e^a)(1-e^i) - I_H\beta _L^2(1-e^a) - I_L\beta _H^2(1-e^i)\big )\\= & {} \frac{1-C}{\tau \beta _H^2\beta _L^2}\frac{1}{1-e^{a+i}}\big (I_H\beta _L^2(1-e^a)^2e^i + I_L\beta _H\beta _L e^{a+i}(1-e^a)(1-e^i) \\{} & {} + I_H\beta _H\beta _L(1-e^a)(1-e^i) + I_L\beta _H^2e^a(1-e^i)^2 + I_L\beta _H\beta _L(1-e^a)(1-e^i)\\{} & {} \times (1-e^{a+i})- I_H\beta _L^2(1-e^a)(1-e^{a+i}) - I_L\beta _H^2(1-e^i)(1-e^{a+i})\big ) \\{} & {} + \frac{1-C}{\tau \beta _H\beta _L}(I_H\beta _L\eta T + I_L\beta _H(1-\eta )T)\\= & {} \frac{1-C}{\tau \beta _H^2\beta _L^2}\frac{1}{1-e^{a+i}}\big (I_H\beta _L^2(1-e^a)(e^i-1) + I_H\beta _L^2(e^a-1)(1-e^i) \\{} & {} + I_H\beta _L\beta _L(1-e^a)(1-e^i) \\{} & {} + I_H\beta _L\beta _L(1-e^a)(1-e^i)\big ) + \frac{1-C}{\tau \beta _L\beta _L}(I_H\beta _L\eta T + I_H\beta _L(1-\eta )T)\\= & {} \frac{1-C}{\tau \beta _L^2\beta _L^2}\frac{(1-e^a)(1-e^i)}{1-e^{a+i}}\big (I_H\beta _L\beta _L + I_H\beta _L\beta _L - I_H\beta _L^2 - I_H\beta _L^2\big ) \\ {}{} & {} +\frac{1-C}{\tau \beta _L\beta _L}(I_H\beta _L\eta T + I_H\beta _L(1-\eta )T)\\= & {} \frac{1-C}{\tau \beta _L^2\beta _L^2}\frac{(1-e^a)(1-e^i)}{1-e^{a+i}}(I_H\beta _L-I_H\beta _L)(\beta _L-\beta _L)\\{} & {} + \frac{1-C}{\tau \beta _L\beta _L}(I_H\beta _L\eta T + I_H\beta _L(1-\eta )T). \end{aligned}$$

By using the definition of \(I_H,I_H,\beta _L,\beta _L\), one has \((I_H\beta _L-I_H\beta _L)(\beta _L-\beta _L)=\frac{\sigma }{\tau }(I_{\max }-I_{\min })^2\) and \(I_H\beta _L\eta T + I_H\beta _L(1-\eta )T=(\frac{I_{M}}{\tau }+\sigma I_{\max }I_{\min })T\). Replacing C by (A1) in the previous equation gives

$$\begin{aligned} \begin{aligned} T\overline{I A}&= \frac{k_d \sigma {\overline{IA}} + k_r}{\tau \beta _L^2\beta _L^2(k_d\sigma I_{\eta } + k_r)}\Big (\Delta (y,T)\frac{\sigma }{\tau }(I_{\max }-I_{\min })^2 \\&\quad + (\frac{I_{\eta }}{\tau }+\sigma I_{\max }I_{\min })\beta _L\beta _L T\Big ), \end{aligned} \end{aligned}$$

where \(\delta (y,T)=\frac{(1-e^a)(1-e^i)}{1-e^{a+i}}\). In other words

$$\begin{aligned} \begin{aligned} {\overline{IA}} =\frac{k_r\Big (\frac{\Delta (y,T)}{T\beta _L\beta _L}\frac{\sigma }{\tau }(I_{\max }-I_{\min })^2+ \frac{I_{\eta }}{\tau }+\sigma I_{\max }I_{\min } \Big )}{\tau \beta _L\beta _L(k_d\sigma I_{\eta } + k_r) - k_d\sigma \Big (\frac{\Delta (y,T)}{T\beta _L\beta _L}\frac{\sigma }{\tau }(I_{\max }-I_{\min })^2+ \frac{I_{\eta }}{\tau }+\sigma I_{\max }I_{\min } \Big ) }. \end{aligned} \end{aligned}$$

We have that

$$\begin{aligned} \Theta :=\frac{\Delta (y,T)(1+\tau \sigma I_{\eta }(y))}{(1+\tau \sigma I_H(y))(1+\tau \sigma I_L(y))\eta (1-\eta )}\rightarrow 1 \text { as }T\rightarrow 0, \end{aligned}$$

and we can manipulate the value \({\overline{IA}}\) to get

$$\begin{aligned} {\overline{IA}} =\frac{\frac{k_rI_{\eta }}{(1+\tau \sigma I_{\eta })\beta _L\beta _L\tau ^2}\left( \tau ^2\beta _L\beta _L\right) +(\Theta -1)\tau \sigma (I_L-I_H)^2\eta (1-\eta )}{k_r+k_d\sigma I_{\eta }-k_d\sigma \frac{I_{\eta }}{(1+\tau \sigma )\tau ^2\beta _L\beta _L}\left( \tau ^2\beta _L\beta _L\right) +(\Theta -1)\tau \sigma (I_L-I_H)^2\eta (1-\eta )}, \end{aligned}$$

and rearranging this last equality, we get

$$\begin{aligned} {\bar{\mu }}^{\text {T}}(y) =\frac{K \sigma k_r I_M(y)\big (1+\xi _1(y)\xi _2(y,T)\big )}{k_r+k_r\tau \sigma I_M(y)+k_d\tau \big (\sigma I_M(y)\big )^2+k_d\sigma I_M(y)\xi _1(y)\xi _2(y,T)},\nonumber \\ \end{aligned}$$
(A2)

where

$$\begin{aligned} \xi _1(y)&= \frac{\sigma \big (I_H(y)-I_L(y)\big )^2\eta (1-\eta )}{\tau \beta _H(y)\beta _L(y)},\\ \xi _2(y,T)&= \frac{(1-e^{-\beta _H(y)\eta T})(1-e^{-\beta _L(y)(1-\eta )T})}{T(1-e^{-\beta _H(y)\eta T-\beta _L(y)(1-\eta )T})}\frac{\eta \beta _H(y)+(1-\eta )\beta _L(y)}{\eta (1-\eta )\beta _H(y)\beta _L(y)}-1. \end{aligned}$$

1.3 Proof of Lemma 1

We split equation (7) into the high/low-flashing light configuration

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\mathrm d}{dt}\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}=-M_H(y)\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}+N_H(y), &{}\text {if } t<\eta T,\\ \frac{\mathrm d}{\mathrm dt}\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}=-M_L(y)\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}+N_L(y),&\text {if } t>\eta T. \end{array}\right. \end{aligned}$$

One can solve this system by using the variation of parameters method and get

$$\begin{aligned} \begin{array}{ll} \begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}=\left( \mathop {\textrm{Id}}\limits -e^{-tM_H(y)}\right) M_H^{-1}(y)N_H(y)+e^{-tM_H(y)}\begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}, &{} \text {if } t<\eta T,\\ \begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}=\left( \mathop {\textrm{Id}}\limits -e^{-(t-\eta T)M_L(y)}\right) M_L^{-1}(y)N_L(y)+e^{-(t-\eta T)M_L(y)}\begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix},&\text {if } t>\eta T, \end{array} \end{aligned}$$

where \(\mathop {\textrm{Id}}\limits \) denotes the identity matrix in \({\mathbb {R}}^{2\times 2}\). Imposing then periodic conditions, i.e, \((A(y,0),C(y,0)) = (A(y,T),C(y,T))\), one can evaluate the values of (A(y, 0), C(y, 0)) and \((A(y,\eta T),C(y,\eta T))\):

$$\begin{aligned} \begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix}&=\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}\right) M_H^{-1}(y)N_H(y)+e^{-\eta TM_H(y)}\begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}, \end{aligned}$$
(A3)
$$\begin{aligned} \begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}&=\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y)}\right) M_L^{-1}(y)N_L(y)+e^{-(1-\eta )TM_L(y)}\begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix}. \end{aligned}$$
(A4)

Replacing finally (A4) in (A3) and vice versa, we obtain

$$\begin{aligned} \begin{aligned} \begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix}&=\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\\&\quad \cdot \left[ \left( \mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)}\right) M_H^{-1} (y)N_H(y)\right. \\ {}&\quad \quad +\left. e^{-\eta TM_H(y)}\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )T M_L(y)}\right) M^{-1}_L(y)N_L(y)\right] , \end{aligned}\nonumber \\ \end{aligned}$$
(A5)
$$\begin{aligned} \begin{aligned} \begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}&=\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta ) TM_L(y)}e^{-\eta T M_H(y)}\right) ^{-1}\\&\quad \cdot \left[ \left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta ) T M_L(y)}\right) M_L^{-1}(y)N_L(y)\right. \\ {}&\quad \quad \left. +e^{-(1-\eta ) TM_L(y)}\left( \mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)}\right) M^{-1}_H(y)N_H(y)\right] . \end{aligned}\nonumber \\ \end{aligned}$$
(A6)

The inverse matrix \((Id-e^{-\eta TM_H}e^{-(1-\eta ) TM_L})\) exists because the matrix \(e^{-\eta TM_H} e^{-(1-\eta ) TM_L}\) has no eigenvalue equal to 1. The solution founded it is then unique.

1.4 Exact growth rate

To calculate the T-average of the growth rate, we calculate the integral \(\int _0^TI(y,t)(A(y, t),C(y,t))dt\):

$$\begin{aligned}&\int _0^TI(y,t)\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}dt = I_H(y)\int _0^{\eta T}\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}dt+I_L(y)\int _{\eta T}^{T}\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}dt\nonumber \\&\begin{aligned}&\quad = \eta T I_H(y) M_H^{-1}(y)N_H(y)-I_H(y)M_H^{-1}(y)\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}\right) \\ {}&\qquad \times \left[ M_H^{-1}(y)N_H(y)-\begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}\right] +I_L(y)(1-\eta ) TM_L^{-1}(y)N_L(y)\\ {}&\qquad -I_L(y)M_L^{-1}(y)\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta ) TM_L(y)}\right) \left[ M_L^{-1}(y)N_L(y)-\begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix}\right] . \end{aligned}\nonumber \\ \end{aligned}$$
(A7)

Using (A5) we can compute

$$\begin{aligned}&M^{-1}_{L}(y)N_L(y)-\begin{pmatrix} A(y,\eta T)\\ C(y,\eta T) \end{pmatrix}\\&\begin{aligned}&= M^{-1}_{L}(y)N_L(y)-\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\\&\quad \cdot \left[ \left( \mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)}\right) M_H^{-1} (y)N_H(y)\right. \\ {}&\quad \quad +\left. e^{-\eta TM_H(y)}\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )T M_L(y)}\right) M^{-1}_L(y)N_L(y)\right] \end{aligned}\\&\begin{aligned}&= \left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\\&\quad \cdot \left[ (\mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)})M_L^{-1}(y)N_L(y) -(\mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)})M_H^{-1}(y)N_H(y) \right. \\&\quad \left. -e^{-\eta T M_H(y)}(\mathop {\textrm{Id}}\limits -e^{-(1-\eta )T M_H (y)})M^{-1}_L(y)N_L(y)\right] \end{aligned}\\&\begin{aligned}&=\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\left[ M_L^{-1}(y)N_L(y) \right. \\&\quad -e^{-\eta TM_H(y)}e^{-(1-\eta )TM_L(y)}M_L^{-1}(y)N_L(y) -M_H^{-1}(y)N_H(y)\\&\quad +e^{-\eta TM_H(y)}M_H^{-1}(y)N_H(y)-e^{-\eta TM_H(y)}M_L^{-1}(y)N_L(y)\\ {}&\left. \quad +e^{-e\eta TM_H(y)}e^{-(1-\eta )TM_L(y)}M_L^{-1}N_L(y)\right] \end{aligned}\\&\begin{aligned}&=\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\left[ (\mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)})M^{-1}_L(y)N_L(y)\right. \\&\left. \quad -(\mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)})M^{-1}_H(y)N_H(y)\right] \end{aligned}\\&\begin{aligned}&=\left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )T M_L(y)}\right) ^{-1}\cdot \\&(\mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)})(M^{-1}_L(y)N_L(y)-M^{-1}_H(y)N_H(y)). \end{aligned} \end{aligned}$$

In the same way, using (A6) we can get

$$\begin{aligned} \begin{aligned} M_H^{-1}(y)N_H(y)-\begin{pmatrix} A(y,0)\\ C(y,0) \end{pmatrix}&= \left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y)}e^{-\eta TM_H(y)}\right) ^{-1}\\ {}&\quad \times (\mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y)})\\ {}&\quad \cdot (M_H^{-1}N_H(y)-M_L^{-1}N_L(y)). \end{aligned} \end{aligned}$$

Replacing the above calculations on (A7), we have

$$\begin{aligned} \int _0^TI(y,t)\begin{pmatrix} A(y,t)\\ C(y,t) \end{pmatrix}&= \eta TI_H(y)M^{-1}_H(y)N_H(y)+(1-\eta )TI_L(y)\nonumber \\&\quad \times M_L^{-1}(y)N_L(y)+\Delta , \end{aligned}$$
(A8)

where

$$\begin{aligned} \begin{aligned} \Delta&= \left[ I_H(y)M^{-1}_H(y)\left( \mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)}\right) \left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y)}e^{-\eta TM_H(y)}\right) ^{-1}\right. \\&\quad \left. \times \left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y}\right) -I_L(y)M^{-1}_L(y)\left( \mathop {\textrm{Id}}\limits -e^{-(1-\eta )TM_L(y}\right) \right. \\&\quad \left. \times \left( \mathop {\textrm{Id}}\limits -e^{-\eta TM_H(y)}e^{-(1-\eta )TM_L(y)}\right) ^{-1}\left( \mathop {\textrm{Id}}\limits -e^{-\eta T M_H(y)}\right) \right] \\&\qquad \cdot \left( M^{-1}_H(y)N_H(y)-M^{-1}_L(y)N_L(y)\right) . \end{aligned} \end{aligned}$$

Finally, the average growth rate \(\frac{1}{T}\int _0^TK\sigma IAdt\) is proportional to the first coordinate of (A8) multiplied by \(\frac{K\sigma }{T}\). Denote \(\delta \) the first coordinate of \(\Delta \) and note that

$$\begin{aligned} M_H^{-1}(y)N_H(y)&= \begin{pmatrix} \dfrac{k_r}{\tau k_d(\sigma I_H(y))^2+\tau k_r\sigma I_H(y)+k_r}\\ \dfrac{\tau k_d(\sigma I_H(y))^2}{\tau k_d(\sigma I_H(y))^2+\tau k_r\sigma I_H(y)+k_r} \end{pmatrix}, \end{aligned}$$
(A9)
$$\begin{aligned} M_L^{-1}(y)N_L(y)&= \begin{pmatrix} \dfrac{k_r}{\tau k_d(\sigma I_L(y))^2+\tau k_r\sigma I_L(y)+k_r}\\ \dfrac{\tau k_d(\sigma I_L(y))^2}{\tau k_d(\sigma I_L(y))^2+\tau k_r\sigma I_L(y)+k_r} \end{pmatrix}, \end{aligned}$$
(A10)

where the first coordinate in (A9) and (A10) multiplied by \(K\sigma \) is exactly \(\mu _S(I_H(y))\) and \(\mu _S(I_L(y))\), respectively. So, the T-average of the growth rate is

$$\begin{aligned} {\bar{\mu }}^{\text {T}}(y) = \eta \mu _s(I_H(y))+(1-\eta )\mu _S(I_L(y)) -\frac{K\sigma }{T}\delta (y,T). \end{aligned}$$
(A11)

1.5 Eigenvalues of matrix M

We will condense the analysis of the eigenvalues of \(M_H\) and \(M_L\) in the matrix

$$\begin{aligned} M(I) =\begin{pmatrix} \sigma I+\frac{1}{\tau } &{} \frac{1}{\tau }\\ k_d\sigma I &{} k_d\sigma I+k_r \end{pmatrix}. \end{aligned}$$

Denoting \(\uplambda _1\) and \(\uplambda _2\) the eigenvalues, then we have

$$\begin{aligned} \text {Tr}(M(I))=\uplambda _1+\uplambda _2&= \sigma I+\frac{1}{\tau }+k_d\sigma I+k_r, \end{aligned}$$
(A12)
$$\begin{aligned} \text {Det}(M(I))=\uplambda _1\uplambda _2&= k_d(\sigma I)^2+k_r\sigma I+\frac{k_r}{\tau }. \end{aligned}$$
(A13)

From (A13), \(\uplambda _1\) and \(\uplambda _2\) has the same sign, and since (A12) holds, the two eigenvalues are positive.

Appendix B: Proof of Lemma 3

The second derivative of the function \(\mu _S\) can be computed as

$$\begin{aligned} \frac{\mathrm d^2}{\mathrm d I^2}\mu _S(I) = -\frac{2K\sigma \left[ \tau \sigma +\frac{k_d}{k_r}\tau \sigma ^2I\left( 3-\frac{k_d}{k_r}\tau \sigma ^2I^2\right) \right] }{\left( 1+\tau \sigma I+\frac{k_d}{k_r}\tau (\sigma I)^2\right) ^3}, \end{aligned}$$

and it is zero in the point \(I_c\) which satisfies

$$\begin{aligned} \left( \frac{k_d}{k_r}\tau \sigma ^2\right) ^2I_c^3-3\frac{k_d}{k_r}\tau \sigma ^2I_c-\tau \sigma =0. \end{aligned}$$

This is a depressed cubic equation, where the determinant correspond to

$$\begin{aligned} \Delta = \left( \frac{1}{\frac{k_d}{k_r}\tau \sigma ^2}\right) ^4(\tau \sigma )^2-4\left( \frac{1}{\frac{k_d}{k_r}\tau \sigma ^2}\right) ^3 \end{aligned}$$

where if \(\Delta \le 0\) all the roots are real. Note that

$$\begin{aligned} \Delta \le 0 \Longleftrightarrow \tau \le 4\frac{k_d}{k_r}. \end{aligned}$$

In this case, the solutions are given by (Zwillinger 2018):

$$\begin{aligned} l\cos {\frac{\theta }{3}}, \quad l\cos {\frac{\theta +2\pi }{3}}, \quad \text {and} \quad l\cos {\frac{\theta +4\pi }{3}} \end{aligned}$$

where

$$\begin{aligned} l = \frac{2}{\sigma \sqrt{\frac{k_d}{k_r}\tau }}, \quad \text {and} \quad \theta = \arccos \left( \frac{\sqrt{\tau }}{2\sqrt{\frac{k_d}{k_r}}}\right) . \end{aligned}$$

From the three possible solutions, only \(l\cos {\frac{\theta }{3}}\) is positive due to \(\theta /3\in (0,\pi /6)\). In the case that \(\Delta > 0\) then the real solution can be written as (Holmes 2002)

$$\begin{aligned} l\cosh \left( \frac{1}{3}\mathop {\textrm{arccosh}}\limits \left( \frac{\sqrt{\tau }}{2\sqrt{\frac{k_d}{k_r}}}\right) \right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fierro Ulloa, J.I., Lu, LD. & Bernard, O. Theoretical growth rate of microalgae under high/low-flashing light. J. Math. Biol. 86, 48 (2023). https://doi.org/10.1007/s00285-023-01871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-01871-2

Keywords

Mathematics Subject Classification

Navigation