Skip to main content
Log in

Dynamics of task allocation in social insect colonies: scaling effects of colony size versus work activities

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The mechanisms through which work is organized are central to understanding how complex systems function. Previous studies suggest that task organization can emerge via nonlinear dynamical processes wherein individuals interact and modify their behavior through simple rules. However, there is very limited theory about how those processes are shaped by behavioral variation within social groups. In this work, we propose an adaptive modeling framework on task allocation by incorporating variation both in task performance and task-related metabolic rates. We study the scaling effects of colony size on the resting probability as well as task allocation. We also numerically explore the effects of stochastic noise on task allocation in social insect colonies. Our theoretical and numerical results show that: (a) changes in colony size can regulate the probability of colony resting and the allocation of tasks, and the direction of regulation depends on the nonlinear metabolic scaling effects of tasks; (b) increased response thresholds may cause colonies to rest in varied patterns such as periodicity. In this case, we observed an interesting bubble phenomenon in the task allocation of social insect colonies for the first time; (c) stochastic noise can cause work activities and task demand to fluctuate within a range, where the amplitude of the fluctuation is positively correlated with the intensity of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allen LJS, Lahodny GE Jr (2012) Extinction thresholds in deterministic and stochastic epidemic models. J Biol Dyn 6(2):590–611

    Article  MATH  Google Scholar 

  • Arcuri A, Lanchier N (2017) Stochastic spatial model for the division of labor in social insects. Math Models Methods Appl Sci 27(01):45–73

    Article  MathSciNet  MATH  Google Scholar 

  • Banks H, Banks J, Bommarco R, Laubmeier A, Myers N, Rundlöf M, Tillman K (2017) Modeling bumble bee population dynamics with delay differential equations. Ecol Model 351:14–23

    Article  Google Scholar 

  • Barton BT, Hodge ME, Speights CJ, Autrey AM, Lashley MA, Klink VP (2018) Testing the AC/DC hypothesis: rock and roll is noise pollution and weakens a trophic cascade. Ecol Evol 8(15):7649–7656

    Article  Google Scholar 

  • Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony size, communication and ant foraging strategy. Psyche A J Entomol 96(3–4):239–256

    Article  Google Scholar 

  • Benaïm M, Schreiber SJ (2019) Persistence and extinction for stochastic ecological models with internal and external variables. J Math Biol 79(1):393–431

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard GB, Orledge GM, Reynolds SE, Franks NR (2000) Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim Behav 59(4):723–738

    Article  Google Scholar 

  • Bonabeau E, obkowski A, Theraulaz G, Deneubourg J-L (1997) Adaptive task allocation inspired by a model of division of labor in social insects. In: Biocomputing and emergent computation: proceedings of BCEC97. World Scientific Press, pp 36–45. https://doi.org/10.5555/648178.751316

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evolut Biol 12:245–257

    Article  Google Scholar 

  • Britton T (2010) Stochastic epidemic models: a survey. Math Biosci 225(1):24–35

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Y, Kang Y, Banerjee M, Wang W (2015) A stochastic SIRS epidemic model with infectious force under intervention strategies. J Differ Equ 259(12):7463–7502

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Y, Kang Y, Wang W (2017) A stochastic SIRS epidemic model with nonlinear incidence rate. Appl Math Comput 305(20):221–240

    MathSciNet  MATH  Google Scholar 

  • Cai Y, Li J, Kang Y, Wang K, Wang W (2020) The fluctuation impact of human mobility on the influenza transmission. J Franklin Inst 357(13):8899–8924

    Article  MathSciNet  MATH  Google Scholar 

  • Cammaerts MC, Cammaerts D (2018) Impact of environmental noise on insects physiology and ethology-a study on ants as models. Biol Eng Med 3:1–8

    Google Scholar 

  • Charbonneau D, Dornhaus A (2015a) When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J Bioecon 17(3):217–242

    Article  Google Scholar 

  • Charbonneau D, Dornhaus A (2015b) Workers ‘specialized’ on inactivity: behavioral consistency of inactive workers and their role in task allocation. Behav Ecol Sociobiol 69(9):1459–1472

    Article  Google Scholar 

  • Charbonneau D, Hillis N, Dornhaus A (2015) ‘lazy’ in nature: ant colony time budgets show high inactivity in the field as well as in the lab. Insectes Sociaux 62(1):31–35

    Article  Google Scholar 

  • Charbonneau D, Poff C, Nguyen H, Shin MC, Kierstead K, Dornhaus A (2017) Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish. Integr Comp Biol 57(3):649–667

    Article  Google Scholar 

  • Charbonneau D, Sasaki T, Dornhaus A (2017b) Who needs lazyworkers? Inactive workers act as a reservelabor force replacing active workers, but inactive workers are not replaced when they are removed. PloS One 12(9):e0184074

    Article  Google Scholar 

  • Chen J, Messan K, Messan MR, DeGrandi-Hoffman G, Bai D, Kang Y (2020) How to model honeybee population dynamics: stage structure and seasonality. Math Appl Sci Eng 1(2):91–206

    Google Scholar 

  • Chown SL, Marais E, Terblanche JS, Klok CJ, Lighton JRB, Blackburn TM (2007) Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct Ecol 21(2):282–290

    Article  Google Scholar 

  • Cole BJ (1986) The social behavior of Leptothorax allardycei (Hymenoptera, Formicidae): time budgets and the evolution of worker reproduction. Behav Ecol Sociobiol 18(3):165–173

    Article  Google Scholar 

  • Corbara B, Lachaud JP, Fresneau D (1989) Individual variability, social structure and division of labour in the ponerine ant ectatomma ruidum Roger (Hymenoptera, Formicidae). Ethology 82(2):89–100

    Article  Google Scholar 

  • Cornejo A, Dornhaus A, Lynch N, Nagpal R (2014) Task allocation in ant colonies. In: Kuhn F (ed) Distributed computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_4

  • Costello RA, Symes LB (2014) Effects of anthropogenic noise on male signalling behaviour and female phonotaxis in Oecanthus tree crickets. Anim Behav 95:15–22

    Article  Google Scholar 

  • Couzin ID, Franks NR (2003) Self-organized lane formation and optimized traffic flow in army ants. Proc R Soc Lond Ser B Biol Sci 270(1511):139–146

    Article  Google Scholar 

  • DeLillo D (1999) White noise. Penguin, London

    Google Scholar 

  • Dornhaus A (2008) Specialization does not predict individual efficiency in an ant. PLoS Biol 6(11):2368–2375

    Article  Google Scholar 

  • Dornhaus A, Holley JA, Pook VG, Worswick G, Franks NR (2008) Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63(1):43–51

    Article  Google Scholar 

  • Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141

    Article  Google Scholar 

  • Dussutour A, Beekman M, Nicolis SC, Meyer B (2009) Noise improves collective decision-making by ants in dynamic environments. Proc R Soc B Biol Sci 276(1677):4353–4361

    Article  Google Scholar 

  • Evans SN, Ralph PL, Schreiber SJ, Sen A (2013) Stochastic population growth in spatially heterogeneous environments. J Math Biol 66(3):423–476

    Article  MathSciNet  MATH  Google Scholar 

  • Feinerman O, Korman A (2017) Individual versus collective cognition in social insects. J Exp Biol 220(1):73–82

    Article  Google Scholar 

  • Fellers JH (1989) Daily and seasonal activity in woodland ants. Oecologia 78(1):69–76

    Article  Google Scholar 

  • Feng T, Qiu Z, Meng X (2019) Dynamics of a stochastic hepatitis c virus system with host immunity. Discrete Contin Dyn Syst B 24(12):6367–6385

    MathSciNet  MATH  Google Scholar 

  • Fewell JH, Harrison JF (2016) Scaling of work and energy use in social insect colonies. Behav Ecol Sociobiol 70(7):1047–1061

    Article  Google Scholar 

  • Fewell JH, Winston ML (1992) Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behav Ecol Sociobiol 30(6):387–393

    Article  Google Scholar 

  • Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167(3):390–400

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Best CS, Jones EL (2006) Decision making by small and large house-hunting ant colonies: one size fits all. Anim Behav 72(3):611–616

    Article  Google Scholar 

  • Franks NR, Partridge LW (1993) Lanchester battles and the evolution of combat in ants. Anim Behav 45(1):197–199

    Article  Google Scholar 

  • Fresneau D (1984) Développement ovarien et statut social chez une fourmi primitive Neoponera obscuricornis Emery (Hym. Formicidae, Ponerinae). Insectes Sociaux 31(4):387–402

    Article  Google Scholar 

  • Gadagkar R, Joshi N (1984) Social organisation in the Indian wasp ropalidia cyathiformis (Fab.)(hymenoptera: vespidae). Zeitschrift Für Tierpsychologie 64(1):15–32

    Article  Google Scholar 

  • Gardner KE, Foster RL, ODonnell S (2007) Experimental analysis of worker division of labor in bumblebee nest thermoregulation (Bombus huntii, Hymenoptera: Apidae). Behav Ecol Sociobiol 61(5):783–792

    Article  Google Scholar 

  • Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85(1):111–138

    Article  Google Scholar 

  • Gordon DM (1996) The organization of work in social insect colonies. Nature 380(6570):121–124

    Article  Google Scholar 

  • Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation sis epidemic model. SIAM J Appl Math 71(3):876–902

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Chen J, Azizi A, Fewell J, Kang Y (2020) Dynamics of social interactions, in the flow of information and disease spreading in social insects colonies: effects of environmental events and spatial heterogeneity. J Theor Biol. https://doi.org/10.1016/j.jtbi.2020.110191

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1980) Ordinary differential equations. Krieger Publishing Company, Malabar

    MATH  Google Scholar 

  • Hasegawa E, Ishii Y, Tada K, Kobayashi K, Yoshimura J (2016) Lazy workers are necessary for long-term sustainability in insect societies. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • Hening A, Nguyen DH, Yin G (2018) Stochastic population growth in spatially heterogeneous environments: the density-dependent case. J Math Biol 76(3):697–754

    Article  MathSciNet  MATH  Google Scholar 

  • Herbers JM (1983) Social organization in Leptothorax ants: within-and between-species patterns. Psyche A J Entomol 90(4):361–386

    Article  Google Scholar 

  • Herbers JM, Cunningham M (1983) Social organization in Leptothorax Longispinosus Mayr. Anim Behav 31(3):759–771

    Article  Google Scholar 

  • Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43(3):525–546

    Article  MathSciNet  MATH  Google Scholar 

  • Holbrook CT, Barden PM, Fewell JH (2011) Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav Ecol 22(5):960–966

    Article  Google Scholar 

  • Holbrook CT, Eriksson T, Overson R, Gadau J, Fewell JH (2013) Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insectes Sociaux 60(2):191–201

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New York

    Google Scholar 

  • Hou C, Kaspari M, Vander Zanden HB, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci 107(8):3634–3638

    Article  Google Scholar 

  • Houston A, Schmid-Hempel P, Kacelnik A (1988) Foraging strategy, worker mortality, and the growth of the colony in social insects. Am Nat 131(1):107–114

    Article  Google Scholar 

  • Jandt JM, Robins N, Moore R, Dornhaus A (2012) Individual bumblebees vary in response to disturbance: a test of the defensive reserve hypothesis. Insectes Sociaux 59(3):313–321

    Article  Google Scholar 

  • Jeanne RL (2003) Social complexity in the Hymenoptera, with special attention to wasps. Kitkuchi T, Azuma N, Higashi S (eds) Genes, behaviors and evolution of social insects. Hokkaido University Press, Sapporo, Japan, pp 81–131

  • Jeanson R, Fewell JH, Gorelick R, Bertram SM (2007) Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 62(2):289–298

    Article  Google Scholar 

  • Johnson BR (2002) Reallocation of labor in honeybee colonies during heat stress: the relative roles of task switching and the activation of reserve labor. Behav Ecol Sociobiol 51(2):188–196

    Article  Google Scholar 

  • Kang Y, Fewell JH (2015) Co-evolutionary dynamics of a social parasite-host interaction model: obligate versus facultative social parasitism. Nat Resour Model 28(4):398–455

    Article  MathSciNet  Google Scholar 

  • Kang Y, Rodriguez-Rodriguez M, Evilsizor S (2015) Ecological and evolutionary dynamics of two-stage models of social insects with egg cannibalism. J Math Anal Appl 430(1):324–353

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Y, Theraulaz G (2016) Dynamical models of task organization in social insect colonies. Bull Math Biol 78(5):879–915

    Article  MathSciNet  MATH  Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27(4):511–541

    Article  MATH  Google Scholar 

  • Kleiber M et al (1932) Body size and metabolism. Hilgardia 6(11):315–353

    Article  Google Scholar 

  • Klein BA (2003) Signatures of sleep in a paper wasp. Sleep 26:A115–A116

  • Klein BA, Klein A, Wray MK, Mueller UG, Seeley TD (2010) Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc Natl Acad Sci 107(52):22705–22709

    Article  Google Scholar 

  • Klein BA, Seeley TD (2011) Work or sleep? Honeybee foragers opportunistically nap during the day when forage is not available. Anim Behav 82(1):77–83

    Article  Google Scholar 

  • Kwapich CL, Tschinkel WR (2013) Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 67(12):2011–2027

    Article  Google Scholar 

  • Lee Y, Kim H, Kang TJ, Jang Y (2012) Stress response to acoustic stimuli in an aphid: a behavioral bioassay model. Entomol Res 42(6):320–329

    Article  Google Scholar 

  • Lighton JR, Bartholomew GA, Feener DH (1987) Energetics of locomotion and load carriage and a model of the energy cost of foraging in the leaf-cutting ant Atta Colombica Guer. Physiological Zoology 60(5):524–537

    Article  Google Scholar 

  • Lindauer M (1952) Ein beitrag zur frage der arbeitsteilung im bienenstaat. Zeitschrift Für Vergleichende Physiologie 34(4):299–345

    Article  Google Scholar 

  • Liu M, Liz E, Röst G (2015) Endemic bubbles generated by delayed behavioral response: global stability and bifurcation switches in an sis model. SIAM J Appl Math 75(1):75–91

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, Webb G, Wu Y (2019) An environmental model of honey bee colony collapse due to pesticide contamination. Bull Math Biol 81(12):4908–4931

    Article  MathSciNet  MATH  Google Scholar 

  • Mailleux AC, Deneubourg JL, Detrain C (2003) How does colony growth influence communication in ants? Insectes Sociaux 50(1):24–31

    Article  Google Scholar 

  • Maistrello L, Sbrenna G (1999) Behavioural differences between male and female replacement reproductives in Kalotermes flavicollis (isoptera, Kalotermitidae). Insectes Sociaux 46(2):186–191

    Article  Google Scholar 

  • Messan K, Messan MR, Chen J, DeGrandi-Hoffman G, Kang Y (2020) Population dynamics of varroa mite and honeybee: effects of parasitism with age structure and seasonality. arXiv preprint arXiv:2003.12089

  • Messan MR, Page RE Jr, Kang Y (2018) Effects of vitellogenin in age polyethism and population dynamics of honeybees. Ecol Model 388:88–107

    Article  Google Scholar 

  • Moore D, Angel JE, Cheeseman IM, Fahrbach SE, Robinson GE (1998) Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behav Ecol Sociobiol 43(3):147–160

    Article  Google Scholar 

  • Muscedere ML, Willey TA, Traniello JF (2009) Age and task efficiency in the ant Pheidole dentata: young minor workers are not specialist nurses. Anim Behav 77(4):911–918

    Article  Google Scholar 

  • Myerscough M, Oldroyd B (2004) Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux 51(2):146–152

    Article  Google Scholar 

  • Naug D (2009) Structure and resilience of the social network in an insect colony as a function of colony size. Behav Ecol Sociobiol 63(7):1023–1028

    Article  Google Scholar 

  • O’Donnell S (1998) Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135(2):173–193

    Article  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25(11):643–652

    Article  Google Scholar 

  • Pol R, de Casenave JL (2004) Activity patterns of harvester ants Pogonomyrmex pronotalis and Pogonomyrmex rastratus in the central Monte desert, Argentina. J Insect Behav 17(5):647–661

    Article  Google Scholar 

  • Qiu Z, Zhu H (2016) Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete Contin Dyn Syst B 21(8):2703–2728

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsch K, Reid CR, Beekman M, Middendorf M (2012) A mathematical model of foraging in a dynamic environment by trail-laying argentine ants. J Theor Biol 306:32–45

    Article  MathSciNet  MATH  Google Scholar 

  • Ranjan A, Raghavan N, Shubhakar K, Thamankar R, Molina J, O’Shea S, Bosman M, Pey K (2016) CAFM based spectroscopy of stress-induced defects in HFO 2 with experimental evidence of the clustering model and metastable vacancy defect state. In: 2016 IEEE International Reliability Physics Symposium (IRPS). IEEE , pp. 7A–4

  • Retana J, Cerdá X (1990) Social Organization of Cataglyphis cursor ant colonies (Hymenoptera, Formicidae): inter-, and intraspecific Comparisons. Ethology 84(2):105–122

    Article  Google Scholar 

  • Retana J, Cerda X (1991) Behavioural variability and development of Cataglyphis cursor ant workers (Hymenoptera, Formicidae) 1. Ethology 89(4):275–286

    Article  Google Scholar 

  • Robinson EJ, Feinerman O, Franks NR (2009) Flexible task allocation and the organization of work in ants. Proc R Soc B Biol Sci 276(1677):4373–4380

    Article  Google Scholar 

  • Rodriguez MR, Smith N, Phan T, Woodbury J, Kang Y (2018) Interactions between leaf-cutter ants and fungus garden: effects of division of labor, age polyethism, and egg cannibalism. Math Model Nat Phenom 13(3):30

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Rodriguez M, Kang Y (2016) Colony and evolutionary dynamics of a two-stage model with brood cannibalism and division of labor in social insects. Nat Resour Model 29(4):633–662

    Article  MathSciNet  Google Scholar 

  • Ruel C, Cerda X, Boulay R (2012) Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim Behav 84(4):853–860

    Article  Google Scholar 

  • Saffman P, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72(8):3111–3113

    Article  Google Scholar 

  • Schmid-Hempel P (1990) Reproductive competition and the evolution of work load in social insects. Am Nat 135(4):501–526

    Article  Google Scholar 

  • Shik JZ (2010) The metabolic costs of building ant colonies from variably sized subunits. Behav Ecol Sociobiol 64(12):1981–1990

    Article  Google Scholar 

  • Slatkin M (1978) The dynamics of a population in a Markovian environment. Ecology 59(2):249–256

    Article  Google Scholar 

  • Spagnolo B, Valenti D, Fiasconaro A (2004) A Noise in ecosystems: a short review. Math Biosci Eng 1(1):185–211

    Article  MathSciNet  MATH  Google Scholar 

  • Sumpter D, Pratt S (2003) A modelling framework for understanding social insect foraging. Behav Ecol Sociobiol 53(3):131–144

    Article  Google Scholar 

  • Theraulaz G, Bonabeau E, Denuebourg J (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond Ser B Biol Sci 265(1393):327–332

    Article  Google Scholar 

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Thomas M, Framenau V (2005) Foraging decisions of individual workers vary with colony size in the greenhead ant Rhytidoponera metallica (Formicidae, Ectatomminae). Insectes Sociaux 52(1):26–30

    Article  Google Scholar 

  • Tietjen WJ (1986) Effects of colony size on web structure and behavior of the social spider Mallos gregalis (Araneae, Dictynidae). J Arachnol 14:145–157

    Google Scholar 

  • Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant solenopsis invicta during one annual cycle: ecological archives M063–002. Ecol Monogr 63(4):425–457

    Article  Google Scholar 

  • Tschinkel WR, Adams ES, Macom T (1995) Territory area and colony size in the fire ant Solenopsis invicta. J Anim Ecol 64:473–480

    Article  Google Scholar 

  • Udiani O, Pinter-Wollman N, Kang Y (2015) Identifying robustness in the regulation of collective foraging of ant colonies using an interaction-based model with backward bifurcation. J Teor Biol 367:61–75

    Article  MathSciNet  MATH  Google Scholar 

  • Waters JS (2014) Theoretical and empirical perspectives on the scaling of supply and demand in social insect colonies. Entomol Exp Appl 150(2):99–112

    Article  Google Scholar 

  • Waters JS, Holbrook CT, Fewell JH, Harrison JF (2010) Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am Nat 176(4):501–510

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wu F, Xu Y (2009) Stochastic Lotka-Volterra population dynamics with infinite delay. SIAM J Appl Math 70(3):641–657

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is funded by the NSF-DMS (Award Number 1716802); the NSF-IOS/DMS (Award Number 1558127); DARPA-SBIR 2016.2 SB162-005; and the James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award (UHC Scholar Award 220020472). T. Feng was partially funded by the Outstanding Chinese and Foreign Youth Exchange Program of China Association of Science and Technology; and the Scholarship Foundation of China Scholarship Council (Award Number 201806840120). Z. Qiu was funded by the National Natural Science Foundation of China (Award Number 12071217, 11671206)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Charbonneau, D., Qiu, Z. et al. Dynamics of task allocation in social insect colonies: scaling effects of colony size versus work activities. J. Math. Biol. 82, 42 (2021). https://doi.org/10.1007/s00285-021-01589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01589-z

Keywords

Mathematics Subject Classification

Navigation