Skip to main content
Log in

An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mechanical interactions between cells and the fibrous extracellular matrix (ECM) in which they reside play a key role in tissue development. Mechanical cues from the environment (such as stress, strain and fibre orientation) regulate a range of cell behaviours, including proliferation, differentiation and motility. In turn, the ECM structure is affected by cells exerting forces on the matrix which result in deformation and fibre realignment. In this paper we develop a mathematical model to investigate this mechanical feedback between cells and the ECM. We consider a three-phase mixture of collagen, culture medium and cells, and formulate a system of partial differential equations which represents conservation of mass and momentum for each phase. This modelling framework takes into account the anisotropic mechanical properties of the collagen gel arising from its fibrous microstructure. We also propose a cell–collagen interaction force which depends upon fibre orientation and collagen density. We use a combination of numerical and analytical techniques to study the influence of cell–ECM interactions on pattern formation in tissues. Our results illustrate the wide range of structures which may be formed, and how those that emerge depend upon the importance of cell–ECM interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment and cell contact guidance. J Biomech Eng 119:137–145

    Article  Google Scholar 

  • Barocas VH, Moon AG, Tranquillo RT (1995) The fibroblast-populated collagen microsphere assay of cell traction force—Part 2: measurement of the cell traction parameter. J Biomech Eng 117:161–170

    Article  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  Google Scholar 

  • Breward CJW, Byrne HM, Lewis CE (2002) The role of cell–cell interactions in a two-phase model for avascular tumour growth. J Math Biol 45(2):125–152

    Article  MathSciNet  MATH  Google Scholar 

  • Byfield FJ, Reen RK, Shentu TP, Levitan I, Gooch KJ (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 42(8):1114–1119

    Article  Google Scholar 

  • Byrne HM, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20:341–366

    Article  MATH  Google Scholar 

  • Byrne HM, King JR, McElwain DLS, Preziosi L (2003) A two-phase model of solid tumour growth. Appl Math Lett 16(4):567–573

    Article  MathSciNet  MATH  Google Scholar 

  • Chauviere A, Hillen T, Preziosi L (2007) Modelling cell movement in anisotropic and heterogeneous network tissues. Netw Heterog Media 2(2):333–357

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V. J Comput Phys 141:199–224

    Article  MathSciNet  MATH  Google Scholar 

  • Cook J (1995) Mathematical models for dermal wound healing: wound contraction and scar formation. PhD thesis, University of Washington

  • Cukierman E, Bassi DE (2010) Physico-mechanical aspects of extracellular matrix influences on tumourigenic behaviors. Semin Cancer Biol 20(3):139–145

  • Dhimolea E, Maffini MV, Soto AM, Sonnenschein C (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3d culture model. Biomaterials 31:3622–3630

    Article  Google Scholar 

  • Drew DA (1983) Mathematical modelling of two-phase flow. Ann Rev Fluid Mech 15:261–291

    Article  Google Scholar 

  • Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503

    Article  MathSciNet  MATH  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  • Ericksen JL (1960) Transversely isotropic fluids. Colloid Polym Sci 173(2):117–122

    Google Scholar 

  • Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704

    Article  MathSciNet  Google Scholar 

  • Green JEF, Friedman A (2008) The extensional flow of a thin sheet of incompressible, transversely isotropic fluid. Euro J Appl Math 19(3):225–257

    Article  MathSciNet  MATH  Google Scholar 

  • Green JEF, Waters SL, Shakesheff KM, Byrne HM (2009) A mathematical model of liver cell aggregation in vitro. Bull Math Biol 71:906–930

    Article  MathSciNet  MATH  Google Scholar 

  • Green JEF, Waters SL, Shakesheff KM, Edelstein-Keshet L, Byrne HM (2010) Non-local models for the interactions of hepatocytes and stellate cells during aggregation. J Theor Biol 267(1):106–120

    Article  MathSciNet  Google Scholar 

  • Green JEF, Bassom AP, Friedman A (2013) A mathematical model for cell-induced gel compaction in vitro. Math Models Methods Appl Sci 23(1):127–163. doi:10.1142/S0218202512500479

    Article  MathSciNet  MATH  Google Scholar 

  • Häcker A (2012) A mathematical model for mesenchymal and chemosensitive cell dynamics. J Math Biol 64:361–401

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2006) M\(^5\) mesoscopic and macroscopic models for mesenchymal motion. J Math Biol 53(4):585–616

    Article  MathSciNet  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1975) Constitutive equations in suspension mechanics. Part 1. General formulation. J Fluid Mech 71(3):481–495

    Article  MathSciNet  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1976) Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76(1):187–208

    Article  MATH  Google Scholar 

  • Holloway C, Dyson R, Smith D (2015) Linear Taylor-Couette stability of a transversely isotropic fluid. Proc R Soc A 471:20150141. doi:10.1098/rspa.2015.0141

    Article  MathSciNet  Google Scholar 

  • Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50:255–266

    Article  Google Scholar 

  • Ingber DE (2008) Can cancer be reversed by engineering the tumour microenvironment? Semin Cancer Biol 18(5):356–364

    Article  Google Scholar 

  • Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  Google Scholar 

  • Kabla A, Mahadevan L (2007) Nonlinear mechanics of soft fibre networks. J R Soc Interface 4(12):99–106

    Article  Google Scholar 

  • Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292(6):H3198–H3206

    Article  Google Scholar 

  • Knapp DM, Barocas VH, Moon AG, Yoo K, Petzold LR, Tranquillo RT (1997) Rheology of reconstituted type i collagen gel in confined compression. J Rheol 41:971–933

    Article  Google Scholar 

  • Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112:3249–3258

    Google Scholar 

  • Krause S, Maffini MV, Soto AM, Sonnenschein C (2008) A novel 3d in vitro culture model to study stromal–epithelial interactions in the mammary gland. Tissue Eng 14:261–271

    Article  Google Scholar 

  • Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumour cell. Cancer Metastasis Rev 28:113–127

  • Lee MEM (2001) Mathematical models of the carding process. PhD thesis, University of Oxford

  • Lee MEM, Ockendon H (2005) A continuum model for entangled fibres. Euro J Appl Math 16:145–160

    Article  MathSciNet  MATH  Google Scholar 

  • Lemon G, King JR, Byrne HM, Jensen OE, Shakesheff KM (2006) Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J Math Biol 52:571–594

    Article  MathSciNet  MATH  Google Scholar 

  • Lopez JI, Mouw JK, Weaver VM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27:6981–6993

    Article  Google Scholar 

  • Manoussaki D, Lubkin S, Vemon R, Murray J (1996) A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44(3–4):271–282

    Article  Google Scholar 

  • Martins-Green M, Bissell MJ (1995) Cell–ECM interactions in development. Semin Dev Biol 6:149–159

    Article  Google Scholar 

  • Murray JD (1993) Mathematical biology, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Namy P, Ohayon J, Tracqui P (2004) Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol 227:103–120

    Article  MathSciNet  Google Scholar 

  • Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signalling: tissue architecture regulates development, homeostasis and cancer. Ann Rev Cell Dev Biol 22:287–309

    Article  Google Scholar 

  • O’Dea RD, Waters SL, Byrne HM (2008) A two-fluid model for tissue growth within a dynamic flow environment. Euro J Appl Math 19(06):607–634

    Article  MathSciNet  MATH  Google Scholar 

  • O’Dea RD, Waters SL, Byrne HM (2010) A multiphase model for tissue construct growth in a perfusion bioreactor. Math Med Biol 27(2):95–127

    Article  MathSciNet  MATH  Google Scholar 

  • Olsen L, Maini PK, Sherratt JA, Dallon J (1999) Mathematical modelling of anisotropy in fibrous connective tissue. Math Biosci 158(2):145–170

    Article  MATH  Google Scholar 

  • Osborne JM, Whiteley JP (2010) A numerical method for the multiphase viscous flow equations. Comput Methods Appl Mech Eng 199:3402–3417

    Article  MathSciNet  MATH  Google Scholar 

  • Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125

    MATH  Google Scholar 

  • Painter KJ (2009) Modelling cell migration strategies in the extracellular matrix. J Math Biol 58:511–543

    Article  MathSciNet  MATH  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89(19):9064–9068. doi:10.1073/pnas.89.19.9064

    Article  Google Scholar 

  • Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

    Article  MATH  Google Scholar 

  • Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ (2007) The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47:300–320

    Article  Google Scholar 

  • Ronnov-Jessen L, Bissell MJ (2008) Breast cancer by proxy: can the microenvironment be both the cause and consequence? Trends Mol Med 15(1):5–13

    Article  Google Scholar 

  • Schreiber DI, Barocas VH, Tranquillo RT (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J 84:4102–4114

    Article  Google Scholar 

  • Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107

    Article  Google Scholar 

  • Spain B (1953) Tensor calculus. Oliver and Boyd, Edinburgh

    MATH  Google Scholar 

  • Stevenson MD, Sieminski AL, McLeod CM, Byfield FJ, Barocas VH, Gooch KJ (2010) Pericellular conditions regulate extent of cell-mediated compaction of collagen gels. Biophys J 99:19–28

    Article  Google Scholar 

  • Strand DW, Franco OE, Basanta D, Anderson ARA, Hayward SW (2010) Perspectives on tissue interactions in development and disease. Curr Mol Med 10:95–112

    Article  Google Scholar 

  • Szymanska Z, Morales-Rodrigo C, Lachowicz M, Chaplain MAJ (2009) Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Models Methods Appl Sci 19(2):257–281

    Article  MathSciNet  MATH  Google Scholar 

  • Takakuda K, Miyairi H (1996) Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials 17(14):1393–1397

    Article  Google Scholar 

  • Thompson DW (1942) On growth and form, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tosin A, Ambrosi D, Preziosi L (2006) Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull Math Biol 68(7):1819–1836

    Article  MathSciNet  MATH  Google Scholar 

  • Tranquillo RT, Murray JD (1993) Mechanistic model of wound contraction. J Surg Res 55:233–247

    Article  Google Scholar 

  • Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PLoS One 4(6):e5902. doi:10.1371/journal.pone.0005902

    Article  Google Scholar 

  • Weigelt B, Bissell MJ (2008) Unravelling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321

    Article  Google Scholar 

  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-\(\beta 1\) from the extracellular matrix. J Cell Biol 179(6):1311–1323

    Article  Google Scholar 

Download references

Acknowledgments

We thank A.M. Soto and C. Sonnenschein (Tufts University) for the initial discussions which led to the development of the model, and D.J. Smith (University of Birmingham) for assistance with aspects of the numerics. RJD gratefully acknowledges the support of the University of Birmingham’s System Science for Health initiative and the hospitality of the School of Mathematical Sciences at the University of Adelaide. JEFG is supported by a Discovery Early Career Researcher Award (DE130100031) from the Australian Research Council. The work of HMB was supported in part by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. F. Green.

Additional information

R. J. Dyson and J. E. F. Green are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 18260 KB)

Supplementary material 2 (avi 19655 KB)

Supplementary material 3 (avi 18876 KB)

Appendix A: Approximation of the cell force, \(\varvec{F}_c\)

Appendix A: Approximation of the cell force, \(\varvec{F}_c\)

In this appendix, we give details of the calculation that leads to the leading-order expression for the cell force given in Eq. (14). Note that we suppress time dependence within this section for notational convenience. We begin by using the fact that \(\varvec{x}' = \varvec{x} + \eta \varvec{\xi }\), where \(\eta \ll 1\), to expand the terms in Eq. (13) which are evaluated at \(\varvec{x}'\) as follows:

$$\begin{aligned} \varvec{a}\left( \varvec{x}'\right)= & {} \varvec{a}(\varvec{x}) + \eta (\varvec{\xi } \cdot \nabla ) \varvec{a}\vert _{\varvec{ x}}+ O(\eta ^2),\end{aligned}$$
(31a)
$$\begin{aligned} \phi _n\left( \varvec{ x}'\right)= & {} \phi _n\left( \varvec{ x}\right) + \eta (\varvec{\xi } \cdot \nabla )\phi _n\vert _{\varvec{ x}} + O(\eta ^2),\end{aligned}$$
(31b)
$$\begin{aligned} \phi _c\left( \varvec{ x}'\right)= & {} \phi _c\left( \varvec{ x}\right) + \eta (\varvec{\xi } \cdot \nabla )\phi _c\vert _{\varvec{ x}} + O(\eta ^2), \end{aligned}$$
(31c)

where the notation \((\varvec{\xi } \cdot \nabla ) \varvec{a}\vert _{\varvec{ x}}\) is intended to emphasise the fact that the directional derivatives are evaluated at the point \(\varvec{x}\).

On integration, the contribution of the leading-order terms in the integral is zero by symmetry. Proceeding to next order, we find

$$\begin{aligned} \varvec{F}_c(\varvec{x})= & {} \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \varvec{\xi }[\phi ^2_c (2 \phi _n (\varvec{a} \cdot \hat{\varvec{\xi }}) [( (\varvec{\xi } \cdot \nabla ) \varvec{a} ) \cdot \hat{\varvec{\xi }}]\nonumber \\&+\, (\varvec{a} \cdot \hat{\varvec{\xi }})^2 (\varvec{\xi } \cdot \nabla ) \phi _n )+ 2 \phi _n \phi _c (\varvec{a} \cdot \hat{\varvec{\xi }} )^2 ( \varvec{\xi } \cdot \nabla ) \phi _c]\,d^N \xi , \end{aligned}$$
(32)

where \(\hat{\varvec{\xi }} = \varvec{\xi } / | \varvec{\xi }|\), and \(\phi _n\), \(\phi _c\) and \(\varvec{a}\) are evaluated at \(\varvec{x}\) (unless otherwise stated). In component form we have

$$\begin{aligned} F_{{c}_i}= & {} \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \xi _i \left[ \phi ^2_c \left( 2 \phi _n a_l \hat{\xi }_l \xi _k \frac{\partial a_j}{\partial x_k} \hat{\xi }_j + a_j \hat{\xi }_j a_l \hat{\xi }_l \xi _k \frac{\partial \phi _n}{\partial x_k} \right) \right. \nonumber \\&\left. +\, 2 \phi _n \phi _c a_l \hat{\xi }_l a_j \hat{\xi }_j \xi _k \frac{\partial \phi _c }{\partial x_k} \right] \, d^N \xi , \end{aligned}$$
(33)

or, equivalently

$$\begin{aligned} F_{{c}_i} = \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \frac{1}{|\varvec{\xi }|^2} \xi _i \xi _j \xi _k \xi _l T_{j k l} \, d^N \xi = A_{i j k l}(\varvec{\xi }) T_{j k l}(\varvec{x}), \end{aligned}$$
(34)

where \(T_{j k l}\) is independent of \(\varvec{\xi }\), and is given by

$$\begin{aligned} T_{j k l} (\varvec{x}) = \left( a_j \frac{\partial }{\partial x_k} (\phi _n \phi ^2_c) + 2 \phi _n \phi ^2_c \frac{\partial a_j}{\partial x_k} \right) a_l , \end{aligned}$$
(35)

and

$$\begin{aligned} A_{i j k l} = \int _{{\varOmega }}F(|\varvec{\xi }|) \frac{1}{|\xi |^2} \xi _i \xi _j \xi _k \xi _l\, d^N \xi . \end{aligned}$$
(36)

Since \(A_{i j k l}\) is an isotropic integral, it must be of the form (Spain 1953)

$$\begin{aligned} A_{i j k l} = \lambda _1 \delta _{i j} \delta _{k l} + \lambda _2 \delta _{i k} \delta _{j l} + \lambda _3 \delta _{i l} \delta _{j k }. \end{aligned}$$
(37)

Furthermore, since \(A_{i j k l} = A_{i k j l} = A_{i l j k}\), we deduce that

$$\begin{aligned} \lambda _1 = \lambda _2 = \lambda _3 = \lambda ^*. \end{aligned}$$
(38)

From Eqs. (36) and (37) we note that

$$\begin{aligned} A_{i i k l} = \int _{{\varOmega }} F(|\xi |) \xi _k \xi _l \, d^N \xi = \left( N +2 \right) \lambda ^* \delta _{k l} , \end{aligned}$$
(39)

and contracting over the remaining indices we obtain

$$\begin{aligned} N(N+2) \lambda ^* = \int _{{\varOmega }} F(|\xi |) |\xi |^2 \, d^N \xi . \end{aligned}$$
(40)

Hence, on substituting Eq. (37) into Eq. (34), and on using the well-known properties of the Kronecker delta and the fact \(|\varvec{a}|=1\), we find

$$\begin{aligned} \varvec{F}_{c}(\varvec{x})= & {} \lambda [2 \phi _n \phi _c^2 (\varvec{a} \cdot \nabla ) \varvec{a} + \varvec{a} \phi _c^2 (\varvec{a} \cdot \nabla ) \phi _n +\phi _n \varvec{a} ( (\varvec{a} \cdot \nabla ) \phi ^2_c) ] \nonumber \\&+\, \lambda [\phi _c^2 \nabla \phi _n +\phi _n \nabla (\phi _c^2) ]\nonumber \\&+\,\lambda [2 \phi _n \phi _c^2 (\nabla \cdot \varvec{a}) \varvec{a} + \phi _c^2 \varvec{a} (\varvec{a} \cdot \nabla ) \phi _n + \phi _n \varvec{a} (\varvec{a} \cdot \nabla \phi ^2_c)], \end{aligned}$$
(41)

where we have assumed that \(\lambda = \eta ^{N+2} \lambda ^* = O(1)\). A little algebra then yields

$$\begin{aligned} \varvec{F}_c(\varvec{x}) = 2 \lambda \left[ (\varvec{a} \cdot \nabla ) (\phi _n \phi _c^2 \varvec{a} ) + \phi _n \phi _c^2 \varvec{a} (\nabla \cdot \varvec{a}) +\frac{1}{2} \nabla (\phi _c^2 \phi _n )\right] . \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyson, R.J., Green, J.E.F., Whiteley, J.P. et al. An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture. J. Math. Biol. 72, 1775–1809 (2016). https://doi.org/10.1007/s00285-015-0927-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0927-7

Keywords

Mathematics Subject Classification

Navigation