Skip to main content

Advertisement

Log in

Genomic Characterization of Salmonella enterica Resistant to Cephalosporin, Quinolones, And Macrolides

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica subsp. enterica (Salmonella), one of the most common causes of bacterial foodborne infections, causes salmonellosis, which is usually self-limiting. However, immunocompromised individuals and children often require antimicrobial therapy. The first line of treatment includes fluoroquinolones, to which Salmonella has emerging resistance worldwide. In fact, the WHO classified fluoroquinolone-resistant Salmonella as a high-priority pathogen. Salmonella carrying genes such as blaCTX and blaCMY can show resistance to cephalosporins which are also regularly used for treatment. This study focused on determining the antimicrobial resistance of 373 Salmonella isolates, collected from various foods, humans, and animals, as well as the environmental sludge between 2005 and 2020 in Türkiye. Phenotypic analysis of the resistance was determined by disk diffusion method. Isolates resistant to any of the following: ciprofloxacin, pefloxacin, azithromycin, and ceftriaxone were tested for the presence of quinolone, beta-lactamase, and/or macrolide resistance genes by PCR and gel electrophoresis. Five multi-drug-resistant isolates were then further whole genome sequenced and analyzed. More than 32% (n = 120) of the isolates showed resistance to fluoroquinolones by disc diffusion. A significant number of quinolone-resistant isolates are presented with mutated parC and gyrA. Furthermore, 42% (n = 106) of the isolates were resistant to azithromycin and 10% of them harbored mphA gene. On the bright side, only eight isolates showed resistance to ceftriaxone. Overall, we observed an increase in the number of isolates showing resistance to fluoroquinolones and azithromycin over the years and low resistance to ceftriaxone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. EFSA (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. https://doi.org/10.2903/j.efsa.2018.5500

    Article  Google Scholar 

  2. Percival SL, Yates M V., Williams DW, et al (2013) Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition. Microbiol Waterborne Dis Microbiol Asp Risks Second Ed 1–695. https://doi.org/10.1016/C2010-0-67101-X

  3. Levantesi C, Bonadonna L, Briancesco R et al (2012) Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 45:587–602. https://doi.org/10.1016/J.FOODRES.2011.06.037

    Article  Google Scholar 

  4. Monack DM (2012) Salmonella persistence and transmission strategies. Curr Opin Microbiol 15:100–107. https://doi.org/10.1016/J.MIB.2011.10.013

    Article  PubMed  Google Scholar 

  5. CDC (2018) Outbreaks Involving Salmonella | CDC. In: CDC. https://www.cdc.gov/salmonella/outbreaks.html. Accessed 30 Nov 2021

  6. Eng SK, Pusparajah P, Ab Mutalib NS et al (2015) Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 8:284–293. https://doi.org/10.1080/21553769.2015.1051243

    Article  CAS  Google Scholar 

  7. World Health Organization (2005) The treatment of diarrhoea: a manual for physicians and other senior health workers, 4th rev

  8. Teunis PFM (2022) Dose response for Salmonella Typhimurium and Enteritidis and other nontyphoid enteric salmonellae. Epidemics 41:100653. https://doi.org/10.1016/j.epidem.2022.100653

    Article  CAS  PubMed  Google Scholar 

  9. EFSA (2022) The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. https://doi.org/10.2903/j.efsa.2022.7209

    Article  Google Scholar 

  10. Palma E, Tilocca B, Roncada P (2020) Antimicrobial Resistance in veterinary medicine: an overview. Int J Mol Sci 21:1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medalla F, Gu W, Friedman CR et al (2021) Increased incidence of antimicrobial-resistant nontyphoidal salmonella infections, United States, 2004–2016. Emerg Infect Dis 27:1662–1672. https://doi.org/10.3201/eid2706.204486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mølbak K (2004) Spread of resistant bacteria and resistance genes from animals to humans—the public health consequences. J Vet Med Ser B 51:364–369. https://doi.org/10.1111/J.1439-0450.2004.00788.X

    Article  Google Scholar 

  13. CDC (2013) Antibiotic Resistance Threats in the United States. Centers DiseasCDC (2013) Antibiot Resist Threat United States Centers Dis Control Prev https//www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdfe Control Prev

  14. Al-Mashhadani M, Hewson R, Vivancos R et al (2011) Foreign travel and decreased ciprofloxacin susceptibility in salmonella enterica infections. Emerg Infect Dis 17:123. https://doi.org/10.3201/EID1701.100999

    Article  PubMed  PubMed Central  Google Scholar 

  15. CDC (2015) National Antimicrobial Resistance Monitoring System NARMS 2015 Human Isolates Surveillance Report

  16. Clark TW, Daneshvar C, Pareek M et al (2010) Enteric fever in a UK regional infectious diseases unit: a 10 year retrospective review. J Infect 60:91–98. https://doi.org/10.1016/J.JINF.2009.11.009

    Article  PubMed  Google Scholar 

  17. Wen SCH, Best E, Nourse C (2017) Non-typhoidal Salmonella infections in children: review of literature and recommendations for management. J Paediatr Child Health 53:936–941. https://doi.org/10.1111/JPC.13585

    Article  PubMed  Google Scholar 

  18. Batchelor M, Hopkins K, Threlfall EJ et al (2005) blaCTX-M genes in clinical salmonella isolates recovered from humans in england and wales from 1992 to 2003. Antimicrob Agents Chemother 49:1319. https://doi.org/10.1128/AAC.49.4.1319-1322.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tate H, Folster JP, Hsu CH et al (2017) Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00488-17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pribul BR, Festivo ML, de Souza MMS, dos Prazeres RD (2016) Characterization of quinolone resistance in Salmonella spp. isolates from food products and human samples in Brazil. Braz J Microbiol 47:196–201. https://doi.org/10.1016/J.BJM.2015.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin D, Chen K, Wai-Chi Chan E, Chen S (2015) Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci Rep 51(5):1–8. https://doi.org/10.1038/srep14754

    Article  CAS  Google Scholar 

  22. Wong MHY, Chen S (2013) First detection of oqxAB in Salmonella spp. isolated from food. Antimicrob Agents Chemother 57:658. https://doi.org/10.1128/AAC.01144-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faccone D, Lucero C, Albornoz E et al (2018) Emergence of azithromycin resistance mediated by the mph (A) gene in Salmonella Typhimurium clinical isolates in Latin America. J Glob Antimicrob Resist 13:237–239. https://doi.org/10.1016/j.jgar.2018.04.011

    Article  PubMed  Google Scholar 

  24. Wang J, Li Y, Xu X et al (2017) Antimicrobial resistance of Salmonella enterica serovar Typhimurium in Shanghai China. Front Microbiol 1:1. https://doi.org/10.3389/fmicb.2017.00510

    Article  Google Scholar 

  25. Durul B, Acar S, Bulut E et al (2015) Subtyping of Salmonella food isolates suggests the geographic clustering of serotype telaviv. Foodborne Pathog Dis 12:958–965. https://doi.org/10.1089/fpd.2015.1995

    Article  CAS  PubMed  Google Scholar 

  26. Acar S, Bulut E, Durul B et al (2017) Phenotyping and genetic characterization of Salmonella enterica isolates from Turkey revealing arise of different features specific to geography. Int J Food Microbiol 241:98–107. https://doi.org/10.1016/j.ijfoodmicro.2016.09.031

    Article  PubMed  Google Scholar 

  27. Cesur A, Sö U, Soyer Y (2019) Isolation and molecular characterization of Salmonellaenterica and Escherichiacolifrom poultry samples. Turkish J Vet Anim Sci 43:408–422. https://doi.org/10.3906/vet-1812-36

    Article  CAS  Google Scholar 

  28. Hauser E, Hebner F, Tietze E et al (2011) Diversity of Salmonella enterica serovar derby isolated from pig, pork and humans in Germany. Int J Food Microbiol 151:141–149. https://doi.org/10.1016/j.ijfoodmicro.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  29. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455. https://doi.org/10.1089/CMB.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshida CE, Kruczkiewicz P, Laing CR et al (2016) The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PloS one. https://doi.org/10.1371/JOURNAL.PONE.0147101

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang S, Yin Y, Jones MB et al (2015) Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 53:1685–1692. https://doi.org/10.1128/JCM.00323-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carattoli A, Zankari E, Garciá-Fernández A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia B, Raphenya AR, Alcock B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/NAR/GKW1004

    Article  CAS  PubMed  Google Scholar 

  36. Cuypers WL, Jacobs J, Wong V et al (2018) Fluoroquinolone resistance in Salmonella: insights by whole genome sequencing. Microb Genomics. https://doi.org/10.1099/mgen.0.000195

    Article  Google Scholar 

  37. EFSA (2017) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. https://doi.org/10.2903/j.efsa.2017.4694

    Article  Google Scholar 

  38. Ryan MP, Dillon C, Adley CC (2011) Nalidixic acid-resistant strains of Salmonella showing decreased susceptibility to fluoroquinolones in the midwestern region of the republic of ireland due to mutations in the gyrA gene. J Clin Microbiol 49:2077. https://doi.org/10.1128/JCM.02574-10

    Article  PubMed  PubMed Central  Google Scholar 

  39. EFSA (2021) The European Union One Health 2019 Zoonoses Report. EFSA J. https://doi.org/10.2903/j.efsa.2021.6406

    Article  Google Scholar 

  40. Kovats RS, Edwards SJ, Hajat S et al (2004) The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol Infect 132:443–453. https://doi.org/10.1017/S0950268804001992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Renuka K, Kapil A, Kabra SK et al (2004) Reduced susceptibility to ciprofloxacin and gyrA gene mutation in north indian strains of Salmonella enterica serotype Typhi and serotype Paratyphi A. Microb Drug Resist 10:146–153. https://doi.org/10.1089/1076629041310028

    Article  CAS  PubMed  Google Scholar 

  42. Campioni F, Souza RA, Martins VV et al (2017) Prevalence of gyrA mutations in nalidixic acid-resistant strains of Salmonella enteritidis isolated from humans, food, chickens, and the farm environment in Brazil. Microb Drug Resist 23:421–428. https://doi.org/10.1089/MDR.2016.0024/ASSET/IMAGES/LARGE/FIGURE2.JPEG

    Article  CAS  PubMed  Google Scholar 

  43. Lee HY, Su LH, Tsai MH et al (2009) High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob Agents Chemother 53:2696–2699. https://doi.org/10.1128/AAC.01297-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yildirmak T, Yazgan A, Ozcengiz G (1998) Multiple drug resistance patterns and plasmid profiles of non-typhi Salmonellae in Turkey. Epidemiol Infect 121:303–307. https://doi.org/10.1017/S0950268898001253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramachandran A, Shanthi M, Sekar U (2017) Detection of blaCTX-M extended spectrum beta-lactamase producing Salmonella enterica serotype typhi in a tertiary care centre. J Clin Diagn Res 11:21. https://doi.org/10.7860/JCDR/2017/30150.10637

    Article  Google Scholar 

  46. Collignon PJ, McEwen SA (2019) One health—its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis. https://doi.org/10.3390/TROPICALMED4010022

    Article  PubMed  PubMed Central  Google Scholar 

  47. Watkins LF, Karp B, Folster J et al (2017) Emerging azithromycin resistance among nontyphoidal Salmonella isolates in the United States. Open Forum Infect Dis 4:S245–S246. https://doi.org/10.1093/ofid/ofx163.527

    Article  Google Scholar 

  48. Khan S, Kurup P, Vinod V et al (2013) Reconsidering azithromycin disc diffusion interpretive criteria for Salmonellae in view of azithromycin MIC creep among typhoidal and nontyphoidal Salmonella. J Lab Phys. https://doi.org/10.4103/JLP.JLP_99_18

    Article  Google Scholar 

  49. Erdem B, Ercis S, Hascelik G et al (2005) Antimicrobial resistance patterns and serotype distribution among Salmonella enterica strains in Turkey, 2000–2002. Eur J Clin Microbiol Infect Dis 24:220–225. https://doi.org/10.1007/s10096-005-1293-y

    Article  CAS  PubMed  Google Scholar 

  50. Ghoddusi A, Nayeri Fasaei B, Karimi V et al (2015) Molecular identification of Salmonella infantis isolated from backyard chickens and detection of their resistance genes by PCR. Iran J Vet Res 16:293–297

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM et al (2021) Presence of tetracycline and sulfonamide resistance genes in Salmonella spp.: literature review. Antibiotics 10:1314. https://doi.org/10.3390/antibiotics10111314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Middle East Technical University, Scientific Research Projects BAP for funding the project GAP-314-2020-10285.

Funding

This study was funded by the Middle East Technical University, Scientific Research Projects BAP, project number: GAP-314-2020-10285.

Author information

Authors and Affiliations

Authors

Contributions

DK contributed to investigation, data analysis and visualization, and writing of the original draft; MG contributed to conceptualization, investigation, methodology, and writing, reviewing, and editing of the manuscript; YS contributed to conceptualization, funding acquisition, project administration, supervision, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Yeşim Soyer.

Ethics declarations

Conflict of interest

This paper is part of a thesis and has not been published before and it is not under consideration by any other journal at the same time. All the authors approve the manuscript submission to this journal and none of the authors have any conflicting interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyali, D., Guzel, M. & Soyer, Y. Genomic Characterization of Salmonella enterica Resistant to Cephalosporin, Quinolones, And Macrolides. Curr Microbiol 80, 344 (2023). https://doi.org/10.1007/s00284-023-03458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03458-y

Navigation