Skip to main content
Log in

Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000–2019)

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000–2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and β-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum β-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6’)-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as β-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crump J, Sjölund-Karlsson M, Gordon M, Parry C (2015) Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 28(4):901–937 (American Society for Microbiology)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. MacFadden D, Bogoch I, Andrews J (2016) Advances in diagnosis, treatment, and prevention of invasive Salmonella infections. Curr Opin Infect Dis 29(5):453–458 (Lippincott Williams and Wilkins)

    CAS  PubMed  Google Scholar 

  3. Ritter A, Tondo E (2014) Foodborne illnesses in Brazil: control measures for 2014 FIFA World Cup travellers. J Infect Dev Countries 8(3):254–257 (Journal of Infection in Developing Countries)

    Google Scholar 

  4. Hendriksen R, Vieira A, Karlsmose S, Wong LF, D., Jensen, A., Wegener, H., et al (2011) Global monitoring of salmonella serovar distribution from the world health organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8(8):887–900

    PubMed  Google Scholar 

  5. Eng S, Pusparajah P, Ab Mutalib N, Ser H, Chan K, Lee L (2015) Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science 8(3):284–293

    CAS  Google Scholar 

  6. EFSA/ECDC (2015) European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13:4329

    Google Scholar 

  7. Melo RTD, Galvão NN, Peres PABM, Fonseca BB, Profeta R, Azevedo VADC, ..., Rossi DA (2021) Molecular characterization and survive abilities of Salmonella Heidelberg strains of poultry origin in Brazil. Front Microbiol 12:1461

    Google Scholar 

  8. Burke L, Hopkins KL, Meunier D, de Pinna E, Fitzgerald-Hughes D, Humphreys H, Woodford N (2014) Resistance to third-generation cephalosporins in human non-typhoidal Salmonella enterica isolates from England and Wales, 2010–12. J Antimicrob Chemother 69:977–981

    CAS  PubMed  Google Scholar 

  9. Apostolakos I, Piccirillo A (2018) A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathol 47(6):546–558 (Taylor and Francis Ltd.)

    CAS  PubMed  Google Scholar 

  10. CLSI. (2015). M02-A12 performance standards for antimicrobial disk susceptibility tests; Approved standard-twelfth edition.

  11. CLSI. (2020). M100 Performance standards for antimicrobial susceptibility testing a CLSI supplement for global application. Performance standards for antimicrobial susceptibility testing performance standards for antimicrobial susceptibility testing.

  12. Ruppé E, Bidet P, Verdet C, Arlet G, Bingen E (2006) first detection of the ambler class C 1 AmpC-lactamase in Citrobacter freundii by a new, simple double-disk synergy test. J Clin Microbiol 44(11):4204–4207

    PubMed  PubMed Central  Google Scholar 

  13. Thean Y, Ng L, He J, Tse H, Li Y (2009) Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 53(1):146–149

    Google Scholar 

  14. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA) (2013) Medidas de prevenção e controle de infecções por Enterobactérias multiresistentes. Nota Técnica 1:1–22

    Google Scholar 

  15. Pasteran F, Veliz O, Rapoport M, Guerriero L, Corso A (2011) Sensitive and specific modified Hodge test for KPC and metallo-beta-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603. J Clin Microbiol 49(12):4301–4303

    PubMed  PubMed Central  Google Scholar 

  16. CLSI. (2015). M07-A10 methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-tenth edition.

  17. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alcock B, Raphenya A, Lau T, Tsang K, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525

    CAS  PubMed  Google Scholar 

  19. Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692. https://doi.org/10.1093/nar/gkv1239

    Article  CAS  PubMed  Google Scholar 

  21. Darling A, Mau B, Blattner F, Perna N (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hornsey M, Wareham DW (2011) In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 55(7):3534–3537

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, ..., Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    CAS  PubMed  Google Scholar 

  24. Albornoz E, Tijet N, De Belder D, Gomez S, Martino F, Corso A et al (2017) QnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of enterobacter species. Antimicrob Agents Chemother 61(5):1

    Google Scholar 

  25. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33(15):2379–2380

    CAS  PubMed  Google Scholar 

  26. Jovčić B, Novović K, Filipić B, Velhner M, Todorović D, Matović K, ..., Kojić M (2020) Genomic characteristics of colistin-resistant salmonella enterica subsp. Enterica serovar infantis from poultry farms in the Republic of Serbia. Antibiotics 9(12):886

    PubMed Central  Google Scholar 

  27. Sun S, Negrea A, Rhen M, Andersson DI (2009) Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 53(6):2298–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim S, Woo JH, Kim N, Kim MH, Kim SY, Son JH, ..., Lee JC (2019) Characterization of chromosome-mediated colistin resistance in Escherichia coli isolates from livestock in Korea. Infect Drug Resist 12:3291

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brasil. (2008), Relatório do monitoramento da prevalência e do perfil de suscetibilidade aos antimicrobianos em Enterococos e Salmonelas isolados de carcaças de frango congeladas comercializadas no Brasil. ANVISA. http://antigo.anvisa.gov.br/documents/33916/395481/Relat%C3%B3rio+Prebaf+-+Programa+Nacional+de+Monitoramento+da+Preval%C3%AAncia+e+da+Resist%C3%AAncia+Bacteriana+em+Frango+-+2008/04658e9f-7ca6-4e4b-b4fe-0fb7ef54a04e. Accessed 20 April 2020.

  30. Voss-Rech D, Potter L, Vaz CSL, Pereira DIB, Sangioni LA, Vargas AC, de Avila Botton S (2017) Antimicrobial resistance in nontyphoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathog Dis 14(2):116–124

    CAS  PubMed  Google Scholar 

  31. Silva, B. C. U. (2015). Resíduos de antibióticos e antiparasitários em alimentos de origem animal. Senior thesis. Universidade Estadual Paulista – Júlio de Mesquita‖. Araraquara. São Paulo. Brasil.

  32. Veldman K, Cavaco L, Mevius D, Battisti A, Franco A, Botteldoorn N et al (2011) International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 66(6):1278–1286

    CAS  PubMed  Google Scholar 

  33. Kuang D, Zhang J, Xu X, Shi W, Chen S, Yang X, ..., Meng J (2018) Emerging high-level ciprofloxacin resistance and molecular basis of resistance in Salmonella enterica from humans, food and animals. Int J Food Microbiol 280:1–9

    CAS  PubMed  Google Scholar 

  34. Karp B, Campbell D, Chen J, Folster J, Friedman C (2018) Plasmid-mediated quinolone resistance in human non-typhoidal Salmonella infections: an emerging public health problem in the United States. Zoonoses Public Health 65(7):838–849

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cunha MP, Davies YM, Cerdeira L, Dropa M, Lincopan N, Knöbl T (2017) Complete DNA sequence of an IncM1 plasmid bearing the novel qnrE1 plasmid-mediated quinolone resistance variant and blaCTX-M-8 from Klebsiella pneumoniae sequence type 147. Antimicrob Agents Chemother 61(9):1

    Google Scholar 

  36. Sartori L, Sellera FP, Moura Q, Cardoso B, Fontana H, Côrtes LA, ..., Lincopan N (2020) Genomic features of a polymyxin-resistant Klebsiella pneumoniae ST491 isolate co-harbouring blaCTX-M-8 and qnrE1 genes from a hospitalised cat in São Paulo, Brazil. J Glob Antimicrob Resist 21:186–187

    PubMed  Google Scholar 

  37. Cerdeira L, Monte DF, Fuga B, Sellera FP, Neves I, Rodrigues L, ..., Lincopan N (2020) Genomic insights of Klebsiella pneumoniae isolated from a native Amazonian fish reveal wide resistome against heavy metals, disinfectants, and clinically relevant antibiotics. Genomics 112(6):5143–5146

    CAS  PubMed  Google Scholar 

  38. Almeida F, Seribelli A, Cazentini Medeiros M, Rodrigues D, De MelloVarani A, Luo Y et al (2018) Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS ONE 13(8):e0201882

    PubMed  PubMed Central  Google Scholar 

  39. Soares F, Camargo C, Cunha M, de Almeida E, Bertani A, Carvalho E et al (2019) Co-occurrence of qnrE1 and blaCTX-M-8 in IncM1 transferable plasmids contributing to MDR in different Salmonella serotypes. J Antimicrob Chemother 74(4):1155–1156

    CAS  PubMed  Google Scholar 

  40. Monte D, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S et al (2019) Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Sci Rep 9(1):1

    CAS  Google Scholar 

  41. Monte DF, Lincopan N, Cerdeira L, Fedorka-Cray PJ, Landgraf M (2019) Early dissemination of qnrE1 in Salmonella enterica serovar Typhimurium from livestock in South America. Antimicrob Agents Chemother 63(9):e00571-e619

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Possebon FS, Alvarez MVN, Ullmann LS, Araújo JP Jr (2021) Antimicrobial resistance genes and class 1 integrons in MDR Salmonella strains isolated from swine lymph nodes. Food Control 128:108190

    CAS  Google Scholar 

  43. Coppola N, Cordeiro NF, Trenchi G, Esposito F, Fuga B, Fuentes-Castillo D, ..., Vignoli R (2021) Imported one-day-old chicks as Trojan horses for multidrug-resistant priority pathogens harboring mcr-9, rmtG, and extended-spectrum β-lactamase genes. Appl Environ Microbiol 88(2):e01675-e1721

    Google Scholar 

  44. Coppola N, Freire B, Umpiérrez A, Cordeiro NF, Ávila P, Trenchi G, ..., Vignoli R (2020) Transferable resistance to highest priority critically important antibiotics for human health in Escherichia coli strains obtained from livestock feces in Uruguay. Front Vet Sci 7:940

    Google Scholar 

  45. Lyu N, Feng Y, Pan Y, Huang H, Liu Y, Xue C, ..., Hu Y (2021) Genomic characterization of Salmonella enterica isolates from retail meat in Beijing, China. Front Microbiol 12:784

    Google Scholar 

  46. Kerdsin A, Deekae S, Chayangsu S, Hatrongjit R, Chopjitt P, Takeuchi D, ..., Hamada S (2019) Genomic characterization of an emerging blaKPC-2 carrying Enterobacteriaceae clinical isolates in Thailand. Sci Rep 9(1):1–7

    Google Scholar 

  47. Uwamino Y, Kubota H, Sasaki T, Kosaka A, Furuhashi M, Uno S, ..., Hasegawa N (2019) Recovery of FRI-5 carbapenemase at a Japanese hospital where FRI-4 carbapenemase was discovered. J Antimicrob Chemother 74(11):3390–3392

    CAS  PubMed  Google Scholar 

  48. Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AM (2020) Antimicrobial resistance in farm animals in Brazil: an update overview. Animals 10(4):552

    Google Scholar 

  49. Panzenhagen PHN, Paul NC, Junior CAC, Costa RG, Rodrigues DP, Shah DH (2018) Genetically distinct lineages of Salmonella Typhimurium ST313 and ST19 are present in Brazil. Int J Med Microbiol 308(2):306–316

    PubMed  Google Scholar 

  50. Bassetti M, Peghin M, Vena A, Giacobbe D (2019) Treatment of infections due to MDR Gram-negative bacteria. Front Med 6:6

    Google Scholar 

  51. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54(3):969–976

    CAS  PubMed  Google Scholar 

  52. Saravanan M, Ramachandran B, Barabadi H (2018) The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathogen 114:180–192

    Google Scholar 

  53. CDC (2014) National Salmonella surveillance annual report, 2012. Atlanta, GA. Retrieved from http://www.cdc.gov/ncezid/dfwed/pdfs/salmo-nella-annual-report-2012-508c.pdf. Accessed 20 Apr 2020

  54. Sampaio JLM, Gales AC (2016) Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol 47:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F et al (2008) Prevalence and spread of extended-spectrum b-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 14:144–153

    PubMed  Google Scholar 

  56. Campioni F, Pitondo-Silva A, Bergamini AM, Falcão JP (2015) Comparison of four molecular methods to type Salmonella Enteritidis strains. APMIS 123(5):422–426

    CAS  PubMed  Google Scholar 

  57. González-Leiza SM, de Pedro MA, Ayala JA (2011) AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli. J Bacteriol 193(24):6887–6894

    PubMed  PubMed Central  Google Scholar 

  58. Sun S, Selmer M, Andersson D (2014) Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS ONE 9(5):e97202

    PubMed  PubMed Central  Google Scholar 

  59. Berrazeg M, Jeannot K, Ntsogo Enguéné V, Broutin I, Loeffert S, Fournier D et al (2015) Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother 59(10):6248–6255

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Almeida F, Seribelli AA, da Silva P, Medeiros MIC, dos Prazeres Rodrigues D, Moreira CG, ..., Falcão JP (2017) Multilocus sequence typing of Salmonella Typhimurium reveals the presence of the highly invasive ST313 in Brazil. Infect Genet Evol 2:41–44

    Google Scholar 

  61. Seribelli AA, Ribeiro TRM, da Silva P, Martins IM, Vilela FP, Medeiros MIC, ..., Falcao JP (2021) Salmonella Typhimurium ST313 isolated in Brazil revealed to be more invasive and inflammatory in murine colon compared to ST19 strains. J Microbiol 59(9):861–870

    CAS  PubMed  Google Scholar 

  62. El-Tayeb M, Ibrahim A, Al-Salamah A, Almaary K, Elbadawi Y (2017) Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz J Microbiol 48(3):499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McMillan EA, Gupta SK, Williams LE, Jové T, Hiott LM, Woodley TA, ..., Tillman GE (2019) Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Front Microbiol 10:832

    PubMed  PubMed Central  Google Scholar 

  64. Abatcha MG, Effarizah ME, Rusul G (2018) Prevalence, antimicrobial resistance, resistance genes and class 1 integrons of Salmonella serovars in leafy vegetables, chicken carcasses and related processing environments in Malaysian fresh food markets. Food Control 91:170–180

    CAS  Google Scholar 

  65. Zhu Y, Lai H, Zou L, Yin S, Wang C, Han X, ..., Chen S (2017) Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int J Food Microbiol 259:43–51

    CAS  PubMed  Google Scholar 

  66. Adesiji YO, Deekshit VK, Karunasagar I (2014) Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci Nutri 2(4):436–442

    CAS  Google Scholar 

  67. Stoll C, Sidhu J, Tiehm A, Toze S (2012) Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ Sci Technol 46(17):9716–9726

    CAS  PubMed  Google Scholar 

  68. Almeida F, Pitondo-Silva A, Oliveira MA, Falcão JP (2013) Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect Genet Evol 19:145–151

    PubMed  Google Scholar 

  69. Navarro-Garcia, F., Ruiz-Perez, F., Cataldi, Á., & Larzábal, M. (2019). Type VI secretion system in pathogenic escherichia coli: structure, role in virulence, and acquisition. Frontiers in Microbiology, 10(AUG). Frontiers Media S.A.

  70. Park, S., Pham, D., Boinett, C., Wong, V., Pak, G., Panzner, U., et al. (2018). The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nature Communications, 9(1).

  71. Ladely S, Meinersmann R, Ball T, Fedorka-Cray P (2016) Antimicrobial susceptibility and plasmid replicon typing of Salmonella enterica serovar kentucky isolates recovered from broilers. Foodborne Pathog Dis 13(6):309–315

    CAS  PubMed  Google Scholar 

  72. García V, Vázquez X, Bances M, Herrera-León L, Herrera-León S, Rosario Rodicio M (2019) Molecular characterization of salmonella enterica serovar enteritidis, genetic basis of antimicrobial drug resistance and plasmid diversity in ampicillin-resistant isolates. Microb Drug Resist 25(2):219–226

    PubMed  Google Scholar 

  73. Guiney DG, Fierer J (2011) The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2:129

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A (2017) An updated view on the Rck invasin of Salmonella: still much to discover. Front Cell Infect Microbiol 7:500

    PubMed  PubMed Central  Google Scholar 

  75. Figueroa-Bossi N, Bossi L (1999) Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33(1):167–176

    CAS  PubMed  Google Scholar 

  76. Pilar AVC, Reid-Yu SA, Cooper CA, Mulder DT, Coombes BK (2012) GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog 8(6):e1002773

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Uzzau S, Bossi L, Figueroa-Bossi N (2002) Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol 46(1):147–156

    CAS  PubMed  Google Scholar 

  78. Davies MR, Broadbent SE, Harris SR, Thomson NR, van der Woude MW (2013) Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLoS Genet 9(6):e1003568

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang S, Shi Z, Xia Y, Li H, Kou Y, Bao Y et al (2012) IbeB is involved in the invasion and pathogenicity of avian pathogenic Escherichia coli. Vet Microbiol 159(3–4):411–419

    CAS  PubMed  Google Scholar 

  80. Gillenius E, Urban CF (2015) The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins. Microbes Infect 17(5):327–336

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cynthia Maria de Campos Prado Manso and the American Journal Experts for reviewing this manuscript for English language.

Funding

This work was funded by FAPESP research grants (2014/13412–8 and 2017/10051–2), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Research Fellowships (309380/2019–7 and 309800/2015–3), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Master fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this study conception and design. Bioinformatic analyses were performed by Aline Parolin Calarga, Luiz Gonzaga Paula de Almeida, Ana Tereza Ribeiro de Vasconcelos, and Leandro Costa Nascimento. Material preparation, data collection, in vivo assays, and analysis were performed by Aline Parolin Calarga, Marco Tulio Pardini Gontijo, Taíse Marongio Cotrim de Moraes Barbosa, Thalita Mara de Carvalho Perri, Silvia Regina dos Santos, Eneida Gonçalves Lemes Marques, and Cleide Marques Ferreira. The first draft of the manuscript was written by Aline Parolin Calarga and Marcelo Brocchi. All the authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Aline Parolin Calarga or Marcelo Brocchi.

Ethics declarations

Ethics approval

This study was approved by the UNICAMP ethics committee (CAAE number 91276318.2.0000.5404) and by the co-participant institutions: The University of São Paulo (91276318.2.3002.0076) and Adolfo Lutz Institute (91276318.2.3001.0059).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Nilton Lincopan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nucleotide Sequence Accession Numbers

The draft genome sequences of our strains were deposited at GenBank under the BioSample numbers SAMN19403791 (S. Enteritidis 520/2008), SAMN23072206 (S. monophasic 725/2016), and SAMN23072404 (S. Typhimurium NCMO-6924/2007), SAMN23072208 (S. Infantis NCMO-6928/2005); BioProject: PRJNA733451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calarga, A.P., Gontijo, M.T.P., de Almeida, L.G.P. et al. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000–2019). Braz J Microbiol 53, 1249–1262 (2022). https://doi.org/10.1007/s42770-022-00748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00748-8

Keywords

Navigation